Velocity/time and Distance/time Graphs - www.m4ths.com
(1) The V/t graph shows a journey below

(a) Find the acceleration in each section
(b) Find the total distance travelled
(c) Find the average speed for the entire journey
(2) The Distance/time graphs shows a journey

(a) Find the speed of each section of the journey
(b) Find the total distance travelled
(c) Find the average speed for the total journey
(3) The V/t graph shows a journey below

(a) Find the acceleration in each section
(b) Find the total distance travelled
(c) Find the average speed for the entire journey
(d) For how long was the walker travelling at more than $4 \mathrm{~m} / \mathrm{s}$ ?
(4) The V/t graph for a walk is shown below

Another Walk \# 5621


A particle travels from rest to $8 \mathrm{~m} / \mathrm{s}$ in one second It maintains this speed and then decelerates to $u \mathrm{~m} / \mathrm{s}$
(a) find the acceleration in the first period
(b) State how long the particle moves with a constant speed.

Given that the total distance travelled is 41 m , find the value of $u$.
(d) Find the deceleration in the last part of the journey.
(5) A distance/time graph is shown below


A particle travels from a point for 3 m at $1 \mathrm{~m} / \mathrm{s}$
The speed of the particle then increases its speed and reaches a point 10 m away from its starting point. The particle then travels a distance of $d$ meters.
Given that the speed of the particle is $4 / 3 \mathrm{~m} / \mathrm{s}$ in the last phase:
(a). find the value of $d$
(b) find the total distance travelled
(c) Find the average speed for the whole journey.
(6) Fred travels from rest to a speed of $4 \mathrm{~m} / \mathrm{s}$ in 8 seconds. He then maintains this speed for 6 seconds before coming to rest in a further 4 seconds. Find the total distance he travels.
(7) A particle travels from rest with acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$ for 10 seconds. It then immediately decelerates to rest again in 5 seconds. Find the total distance travelled.
(8) A particle travels from rest for 8 seconds to a speed of $\mathrm{Vm} / \mathrm{s}$ It maintains this seed for 10 seconds before coming to rest in a further 4 seconds. Given the total distance travelled is 592 m , find the value of V .

