The Equation of a Straight Line www.m4ths.com - Steve Blades
(1) Find the gradient through each set of points
(a) $(2,3)$ and $(-3,6)$
(b) $\left(\frac{2}{5}, 2\right)$ and $(3,-1)$
(c) (a, c) and (b, d)
(2) Write down the gradient and y intercept of each line
(a) $y=-3 x+8$
(b) $y=4+x$
(c) $6 x+7 y-5=0$
(3) Find where each line crosses the coordinate axes
(a) $y=10 x-8$
(b) $6 x+7 y-5=0$
(4) State the 3 conditions that allow you to find the equation of a straight line.
(5) Find the equation of a straight line that has:
(a) gradient 6, y intercept of -2
(b) gradient -4, y intercept of 5
(6) Find the equation of the line that:
(a) Has gradient 5 and passes through $(2,3)$
(b) Has gradient -4 and passes through $(5,-7)$
(7) Find the equation of the line that passes through:
(a) $(6,7)$ and $(9,19)$
(b) $(-4,5)$ and $(3,19)$
(c) $(2,-3)$ and $(4,-9)$
(d) $(0.5,-4)$ and $(5,9)$
(8) Draw the graph of each on the small grid given:
(a) $y=2 x+1$
(b) $x+y=3$
(c) $2 x-3 y+6=0$

(9) Find the equation of each line below

(10) A line passes through the points $(7,9)$ and $(10,5)$. Find where the line crosses the coordinate axes.
(11) The line with equation $y=$ $4+x$ meets the coordinate axes at A and B. Find the area of $\triangle A O B$ where O is the origin.
(12) The line $x+y=8$ crosses the coordinate axes at P and Q. Find the length $P Q$.
(13) By choosing 2 points on the graph given find an equation for the graph

(14) The line with gradient -3 and passes through the point $(4,2)$ meets the line with equation $x+$ $y=6$ at the point P.
(a) Use simultaneous equations to find the coordinates of P.
The two lines cross the y axis at the points Q and R respectively. Find the area of triangle QPR. (Sketching this will really help!)
(15) Find the coordinates of where the lines $y=5 x-1$ and $y=3-2 x$ meet.
(16) The lines $x=6$ and $y=4$ intersect the line with the equation $x=8-y$ at the points R and Q. Find the area of the trapezium OPQR where O is the origin.
(17) The line $y=p x+q$ where $p>0$ and $q>0$ crosses the coordinate axes at A and B.
(a) Find the coordinates of A and B
(b) Find the area of the triangle $A O B$ where O is the origin in terms of p and q.
(c) Find the length of $A B$ in terms of p and q.
(d) Given that $(3,6)$ is on the line, show that $3 p+q-6=0$
(18) Find where the graph of $p x+q y+r=0$ crosses the coordinate axes. Give your answers in terms of p, q and r.

