Upper and Lower Bounds – www.m4ths.com – Steve Blades

- (1) The length of a field is 13 metres long and 20 metres wide, both to the nearest metre.
 - (a) Find the minimum area of the field.
 - (b) Find the maximum perimeter of the field.
- (2) The length of rectangle is 8.4cm and the width is 7.3cm. Both are accurate to 0.1cm.(a) Find the maximum possible area of the rectangle.
 - (b) Find the least possible perimeter of the rectangle.
- (3) A = 25 to the nearest integer and B = 1.8 to 1 decimal place.
 - (a) Find the maximum value of A B
 - (b) Find the minimum value of AB
 - (c) Find the minimum value of A \div B
- (4) The length of a swimming pool is 23m correct to 2 significant figures. The width of the pool is 42m correct to 2 significant figures. The depth of the pool is 1.8m correct to one decimal place
 - (a) Find the upper and lower bounds of the length of the pool
 - (b) Find the upper and lower bounds of the width of the pool
 - (c) Find the upper and lower bounds of the depth of the pool
 - (d) Find the maximum volume of the pool in m³
- (5) X = 430 to 2 SF Y = 1.2 to 2 SF Z = 5 to 1 SF(a) Find the minimum value of XYZ (b) Find the maximum value of $X \div (Y + Z)$
- (6) The formulae T = RQ² is used.
 R = 40 to the nearest 10
 Q = 12 to the nearest whole number.
 Find the minimum value of T.
- (7) The formula P = M N³
 P = 300 to 1 significant figure.
 N = 2.5 to one decimal place.
 Find the least value of M.
- (8) The area of a rectangle is 40cm² correct to the nearest cm². One side length is 5cm correct to the nearest integer.
 Find the maximum possible length of the longest side of the rectangle