Basic Sequences - www.m4ths.com - Steve Blades ©
Section 1 - Generating terms in a sequence.
Find the first 5 terms in each sequence below:
(1) $3 n-1$
(2) n^{2}
(3) $4 n+n^{2}$
(4) $(n-1)^{2}$
(5) $n^{3}-10$
(6) $2 n^{2}+3$
(7) 5^{n}
(8) $4-n^{4}$
(9) $n+7 n^{2}$
(10) $\frac{12}{n}$

Section 2 - Writing a term - to - term rule.

(a) Write the term-to-term rule for each sequence below such as "Add 2 each time"
(b) Write down the next two terms in each sequence
(1) $12,10,8,6,4 \ldots \ldots$
(2) $10,20,40,80 \ldots$.
(3) $4,20,100,500 \ldots$.
(4) $80,40,20,10 \ldots$.
(5) $3,6,9,15,24 \ldots \ldots$
(6) $4,-8,16,-32,64$

Section 3 - Finding the nth term (Linear).

For each ARITHMETIC or LINEAR sequence below find the $n t h$ term formula such as $5 n-1$
(1) $5,9,13,17 \ldots$
(2) $3,8,13,18,23 \ldots$
(3) $11,13,15,17,19 \ldots$
(4) $2,5,8,11,14 \ldots$.
(5) $7,11,15,19,23 \ldots$
(6) $8,6,4,2 \ldots$
(7) $16,13,10,7,4 \ldots$.
(8) $20,15,10,5,0 \ldots$.
(9) $2,6,10,14,18 \ldots$.
(10) $7,5,3,1 \ldots \ldots$

Section 4 - Fibonacci Type Sequences

For each sequence below, find the missing terms.
(1) $6,7,13$, \qquad
(2) 10,12 , \qquad
(3) 3,5 , \qquad
\qquad 21
(4) \qquad 22, 36
(5) $A, B, A+B$, \qquad
(6) \qquad 60, 97
(7) P, Q, \qquad 60, 97
(8) 0,1 , \qquad
(9) M, -N, \qquad ,
(10) B - A , A, \qquad

Basic Sequences - www.m4ths.com - Steve Blades ©

 Section 1 - Generating terms in a sequence.Find the first 5 terms in each sequence below:
(1) $3 n-1$
(2) n^{2}
(3) $4 n+n^{2}$
(4) $(n-1)^{2}$
(5) $n^{3}-10$
(6) $2 n^{2}+3$
(7) 5^{n}
(8) $4-n^{4}$
(9) $n+7 n^{2}$
(10) $\frac{12}{n}$

Section 2 - Writing a term - to - term rule.

(a) Write the term-to-term rule for each sequence below such as "Add 2 each time"
(b) Write down the next two terms in each sequence
(1) $12,10,8,6,4 \ldots \ldots$
(2) $10,20,40,80 \ldots$.
(3) $4,20,100,500 \ldots$.
(4) $80,40,20,10 \ldots$.
(5) $3,6,9,15,24 \ldots \ldots$
(6) $4,-8,16,-32,64$

Section 3 - Finding the nth term (Linear).

For each ARITHMETIC or LINEAR sequence below find the $n t h$ term formula such as $5 n-1$
(1) $5,9,13,17 \ldots$
(2) $3,8,13,18,23 \ldots$
(3) $11,13,15,17,19 \ldots$
(4) $2,5,8,11,14 \ldots$.
(5) $7,11,15,19,23 \ldots$
(6) $8,6,4,2 \ldots$
(7) $16,13,10,7,4 \ldots \ldots$
(8) $20,15,10,5,0 \ldots$.
(9) $2,6,10,14,18 \ldots$.
(10) $7,5,3,1 \ldots \ldots$

Section 4 - Fibonacci Type Sequences

For each sequence below, find the missing terms.
(1) $6,7,13$, \qquad
(2) 10,12 , \qquad ,
(3) $3,5, \ldots, \ldots, 21$
(4) \qquad 22, 36
(5) $A, B, A+B$, \qquad
(6) \qquad
\qquad 60, 97
(7) P, Q, \qquad
\qquad
(8) 0,1 , \qquad _, _ ,
(9) M, -N, \qquad ,
(10) B-A , A, \qquad

