Rearranging Equations 2	(15)	$\sqrt{x+y} = m$	$(29) \sqrt[4]{x-m} = t$
www.m4ths.com	(16)	$\sqrt[3]{x} = m$	$(30) \sqrt[4]{x+m} = t+n$
$(1) \qquad x-y=z$			
$(2) \qquad x+y=z$	(17)	$\sqrt{x} + n = m$	(31) The formula for the volume of a sphere is $V = \frac{4}{3}\pi r^3$. Show
(3) $\frac{x}{y} = z$	(18)	$(x+y)^2 = p$	that $r = \sqrt[3]{rac{3V}{4\pi}}$
$(4) \qquad \frac{y}{x} = z$	(19)	$\sqrt{\frac{x}{y}} = t$	(32) The volume of a cone is given as $V = \frac{1}{3}\pi r^2 h$. Make r the subject of the formula.
$(5) \qquad xy=z$	(20)	$2\sqrt{\frac{x}{y}} = tm$	(33)* By considering the difference of two squares, make x the subject of m = (x + A)(x - A)
(6) $xyz = m$	(21)	x + y = mx + n	
$(7) \qquad xy-z=m$	(22)	tx - m = nx + y	(34)** By completing the square, make x the subject of the equation $x^2 - 4x = n$
$(8) \qquad 3xy + z = m$	(23)	xyz + m = n - rx	
$(9) \qquad y(x+z)=m$	(24)	$y = \frac{m+x}{n+x}$	(35)** The cosine rule is given by $a^2 = b^2 + c^2 - 2bc \cos A$ Make A the subject
$(10) \qquad \frac{z-y}{x} = m$	(25)	$t = \frac{xm+p}{x-4}$	(36)** Given that $M = 2x^{\frac{1}{2}}$ and $N = 4x^{\frac{1}{3}}$, express M in terms of
(11) $x^2 = y$	(26)	$\frac{y+m}{x-n} = t + r$	Ν.
(12) $x^3 = m$	(27)	$y = \frac{\sqrt{x} + m}{\sqrt{x} - n}$	(37)** Make x the subject of $x^{\frac{3}{4}}y = mx^{\frac{2}{5}}$
(13) $\sqrt{x} = m$	(28)	$y = \frac{x^2 + r}{x^2 + p}$	(38) ^{**} By using logarithms, make x the subject of $m^x = n$

(14) $\sqrt{x} = m + n$