Rearranging Equations 1

 $(15) \qquad \sqrt{x+y} = m$

 $(29)^* \quad \sqrt[4]{x-m} = t$

www.m4ths.com Make *x* the subject of each!

 $(16) \qquad \sqrt[3]{x} = m$

 $(30)^*$ $\sqrt[4]{x+m} = t+n$

$$(1) x - y = z$$

 $(17) \sqrt{x} + n = m$

(31)* The formula for the volume of a sphere is $V=\frac{4}{3}\pi r^3$. Show

$$(2) x + y = z$$

 $(18) (x+y)^2 = p$

that $r = \sqrt[3]{\frac{3V}{4\pi}}$

(3)
$$\frac{x}{y} = z$$

 $(19) \qquad \sqrt{\frac{x}{y}} = t$

(32)* The volume of a cone is given as $V=\frac{1}{3}\pi r^2 h$. Make r the subject of the formula.

$$(4) \qquad \frac{y}{x} = z$$

(5)

(7)

 $(20)^* \quad 2\sqrt{\frac{x}{y}} = tm$

(33)** By considering the difference of two squares, make x the subject of m = (x + A)(x - A)

(6)
$$xyz = m$$

xy = z

$$(21) x + y = mx + n$$

xy - z = m

- (22) tx m = nx + y
- (34)*** By completing the square, make x the subject of the equation $x^2 4x = n$

(8) 3xy + z = m

(23) xyz + m = n - rx

- (9) y(x+z) = m
- $(24) y = \frac{m+x}{n+x}$

(35)*** The cosine rule is given by $a^2 = b^2 + c^2 - 2bc \cos A$ Make A the subject

 $(10) \qquad \frac{z-y}{x} = m$

 $(25) t = \frac{xm+p}{x-4}$

(36)*** Given that $M=2x^{\frac{1}{2}}$ and $N=4x^{\frac{1}{3}}$, express M in terms of M

(11) $x^2 = y$

 $(26) \qquad \frac{y+m}{x-n} = t$

(37)*** Make *x* the subject of $x^{\frac{3}{4}}y = mx^{\frac{2}{5}}$

 $(12) x^3 = m$

- $(27)^* \quad y = \frac{\sqrt{x} + m}{\sqrt{x} n}$
- (13) $\sqrt{x} = m$ (28)* $y = \frac{x^2 + r}{r^2 + n}$

(38)*** By using logarithms, make x the subject of $m^x = n$

 $(14) \sqrt{x} = m + n$