Parametric Equations - www.m4ths.com - Steve Blades ©

(1) A curve has parametric equations

$$x = 4t^{1/3}, t \in R$$

 $y = t^2 - 64$

Find where the curve crosses the coordinate axes.

(2) A curve has parametric equations

$$x = 3(t - 1),$$

$$y = \ln(t + 5)$$

(a) Explain why the domain needs to be restricted.

The domain is restricted such that t > -3

- (b) Find where the curve crosses the coordinate axes.
- (3) A curve has parametric equations

$$x = 2 + 3\cos 2t, \qquad 0 \le t \le 2\pi$$

$$y = 4 - \sin t$$

- (a) Show that the cartesian equation for the curve can be written as $(y + a)^2 = b(c x)$
- (b) State the domain and the range of the cartesian function.

A 3D printer is used to make an 'arrowhead' for an expensive safety spear for a child's game. The graph of the parametric equations is sketched below.

- (c) Given that one unit = 4cm, find the length of spear head. (The length is the to the tip of the spear)
- (d) Find the maximum width of the spear head.
- (4) Derek is making a shallow bowl on a 4D printer for some fruit punch he will have at a party. The bowl is modelled by the parametric equations:

$$x = 1 + 2\cos t$$
, $\pi \le t \le 2\pi$
 $y = 2 + \sin t$

A diagram of the bowl is shown below.

- (a) Find the width of the opening of the bowl.
- (b) Find the depth of the bowl.
- (c) By finding the Cartesian equation, show that the cross section of the bowl is not a hemisphere.