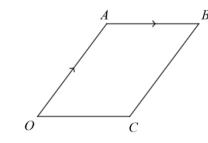
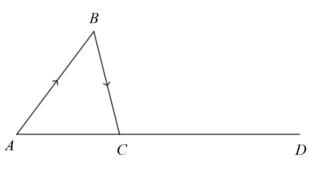

## Vectors (Geometric) www.m4ths.com

(1) The diagram below shows the regular hexagon ABCDEF with centre O.  $\overrightarrow{OA} = \mathbf{a}$  and  $\overrightarrow{OB} = \mathbf{b}$ 




Find the following vectors in terms of **a** and **b** in their simplest form!

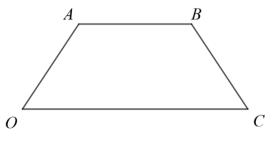

| (a) $\overrightarrow{AO}$ | (b) $\overrightarrow{AB}$ | (c) $\overrightarrow{DA}$ | (d) $\overrightarrow{BF}$ |
|---------------------------|---------------------------|---------------------------|---------------------------|
| (e) $\overrightarrow{EC}$ | (f) $\overrightarrow{CE}$ | (g) $\overrightarrow{BE}$ | (h) $\overrightarrow{CF}$ |

(2) The diagram below shows the parallelogram *OABC*.

 $\overrightarrow{OA} = \mathbf{a}$  and  $\overrightarrow{AB} = \mathbf{b}$ 

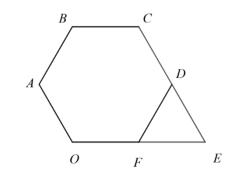


(a) Find the vectors  $\overrightarrow{OB}$ (b) X is the midpoint of OA and Y is the midpoint of AB. Prove that  $\overrightarrow{XY}$  is parallel to  $\overrightarrow{OB}$ . (3) The diagram below shows a triangle *ABC*  $\overrightarrow{AB} = \mathbf{p}$  and  $\overrightarrow{BC} = \mathbf{2q}$ 



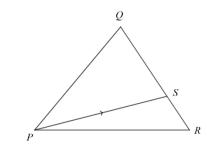

(a) The line ACD is a straight line and CD = 2AC.

Show that  $\overrightarrow{BD} = 2(\mathbf{p}+\mathbf{3q})$ 


(b) The point X lies on AB such that AX: XB = 1:3 and the point Y lies on BC such that BY: YC = 3: 1. Show that  $\overrightarrow{XY}$  is parallel to  $\overrightarrow{CD}$ 

(4) The diagram below shows the trapezium OABC where OC = 2AB $\overrightarrow{OA} = \mathbf{2p} + \mathbf{3q}$  and  $\overrightarrow{AB} = \mathbf{5p}$ 




X is the midpoint of BC. Find  $\overrightarrow{XO}$  in its simplest form.

(5) The diagram below shows a regularhexagon and an equilateral triangle. The linesOFE and CDE are straight lines.



 $\overrightarrow{OA} = \mathbf{p}$  and  $\overrightarrow{OF} = \mathbf{q}$ The point *X* is the midpoint of *AB* and the point *Y* is the midpoint of *FD*. (a) Prove that the point *E*, *X* and *Y* are collinear. (b) Find the ratio *EX*: *XY* 

(6) The diagram below shows the triangle PQR. The point *S* lies on QR such that QS:SR = 2:1



 $\overrightarrow{QS} = \mathbf{2m}$  and  $\overrightarrow{QP} = 5\mathbf{n}$ Find an expression for  $\overrightarrow{PR}$  in terms of **m** and **n**