Naming Transformations (Including a Centre of Enlargement) - www.m4ths.com

(1) Describe the enlargement below that maps Shape A to each of the other shapes. You must include the centre of enlargement.

(2) (a) State fully the single transformation that maps Shape A to Shape B.

(b) State fully the single transformation that maps Shape B to Shape A.
(c) Draw the shape C such that the transformation from Shape B to C is an enlargement $S F \frac{1}{4}$, centre $(4,2)$
(d) A triangle D is drawn with vertices $(5,3),(13,3)$ and $(5,11)$. Describe fully the single transformation that maps A to D.
(e) Draw the triangle E which is an enlargement of A by scale factor -1 , centre $(3,1)$.
(3) (a) Explain why the diagram below shows an enlargement with a negative scale factor

(b) State fully the single transformation that maps Shape A to Shape B.
(c) State fully the single transformation that maps Shape B to Shape A.
(4) State fully, the single transformation that maps Shape A to each of the other shapes.

(5) State fully, the single transformation that maps Shape A to Shape B

(6) The diagram below shows Shape A and Shape B.
Shape A is enlarged by scale factor S centre $(-2,1)$ and then reflected to give Shape B.

(a) Write down the value of S
(b) Describe the reflection.
(c) State fully a different transformation that could have been applied instead of the reflection on the second transformation.
(7) The diagram below shows Shape A and Shape B.

(a) Describe fully the single transformation that maps Shape A to B.
(b) Describe fully the single transformation that maps Shape B to A.
(c) Shape B is enlarged twice with centre of enlargement $(0,0)$ to give Shape A.
Write down the possible scale factors of the two transformations.
(8) The points $A(3,1), B(5,1)$ and $C(3,4)$ are mapped to the points A^{\prime}, B^{\prime} and C^{\prime} under different transformations. A^{\prime}, B^{\prime} and C^{\prime} are the 'images of' A, B and C respectively.
Describe fully, the single transformation that maps the points A, B and C to each of the following:
(a) $A^{\prime}(4,-2), B^{\prime}(8,-2)$ and $C^{\prime}(4,4)$
(b) $A^{\prime}(-1,-3), B^{\prime}(-7,-3)$ and $C^{\prime}(-1,-12)$
(9) Two congruent squares are shown below.

Describe fully, 3 different transformations, that would move one of the shapes to the other.
(10) The diagram below shows the square $A B C D$.

State which points (A, B, C or D) will remain invariant under the following transformations.
(a) A reflection in the line $y=x$
(b) A rotation 180°, centre $(1,1)$.
(c) A reflection in the line with equation $x=3$
(d) An enlargement $S F-1$, centre $(3,3)$.
(e) A reflection in the line $x+y=4$
(f) A reflection in the line $y=1$
(g) A rotation 180^{0}, centre $(2,2)$.

