Equation of a Circle (Centre (0,0)) www.m4ths.com – Steve Blades! ©

(1) Match the equation of the circles given with the circles drawn below.

- (2) Write down the equation of the circle with:
- (a) Centre (0,0), Radius 5
- (b) Centre (0,0), Radius 15
- (c) Centre (0,0), Diameter 4
- (d) Centre (0,0), Radius 6
- (e) Centre (0,0), Diameter 2

(3) Without using calculator, find the radius of the circle with equation $x^2 + y^2 = 18$ giving your answer in the form $p\sqrt{q}$.

(4) Sketch the circles with the following equations showing where they cut the coordinate axes. Give any non-integers answers as simplified surds.

(a) $x^{2} + y^{2} = 36$ (b) $x^{2} + y^{2} = 100$ (c) $x^{2} + y^{2} = 20$ (d) $x^{2} + y^{2} = 1$ (e) $2x^{2} + 2y^{2} = 50$

(5) A circle has the equation $x^2 + y^2 = 100$. (a) Show that the point P(3,9) lies inside the circle.

(b) Find the coordinates of a point Q on the circle where both coordinates are negative,

(6) The diagram below shows the circle with equation $x^2 + y^2 = 64$ inscribed in a square/ The side lengths of the square are tangents to the circle.

Show that the shaded region has area $64-16\pi$

(7) The diagram below shows the circle with equation $x^2 + y^2 = 20$ and part of the line with equation y = 2x. The line cuts the circle at the points *A* and *B*.

(a) Use simultaneous equations to show that $5x^2 = 20$

(b) Hence find the x coordinates of A and B.
(c) Use your answer to pat (b) to find the y coordinates of A and B.

(8) The diagram below shows a circle with equation $x^2 + y^2 = r^2$ and the line with equation x = a and x = b. The two lines are tangents to the circle.

Given that a - b = 12, find the equation of the circle.

(9) The diagram below shows the circle with equation $x^2 + y^2 = 25$ and the tangent to the circle at the point P(3,4)

(a) Show that the gradient of the radius is $\frac{4}{3}$. (b) Hence, explain why the gradient of the tangent is $\frac{-3}{4}$.

(c) Show that the equation of the tangent is $y = -\frac{3}{4}x + 25$

(10) The diagram below shows the circle with equation $x^2 + y^2 = 169$ and a tangent drawn to the circle at the point (-12,5)

Find the equation of the tangent.

(11) The diagram below shows two circles centre O. Point A lies on the smaller circle and has coordinates (3,4) and point B lies on the large circle and has coordinates (8,6).

Given that *A* and *B* can move on the circumference of their circle, find the maximum possible distance *AB*.

(12) A circle has centre (0,0) and radius 10. A tangent to the ccircle is draw at the point (6, -8). The tangent crosses the x axis at A and the y axis at B.

Find the area of $\triangle AOB$ where O is the origin.

(13) Two concentric circles centres *O* are shown below.

Given that the point $P(2\sqrt{2}, \sqrt{3})$ lies on one circles and $Q(-2\sqrt{3}, 5)$ on the other, show that the shaded area between the circles is 6π .

(14) The diagram below shows a circle centre O. The points A, B and C are all points on the circle and form the tirangle ABC.

The points A and B lie on the x axis and a tangent to the circle is drawn at B. Given that AC = 7 and CB = 24, find the equation of the tangent at B.

(15) A circle has equation $x^2 + y^2 = 108$ and a line has equation $y = \sqrt{3}x$.

(a) Without a calculator, find the exact coordinates of the point where the line intercests the circle.

(b) Explain why the line is a diameter of the circle.