Equation of a Circle (Centre (0,0)) www.m4ths.com - Steve Blades! ©
(1) Match the equation of the circles given with the circles drawn below.

(2) Write down the equation of the circle with:
(a) Centre (0,0), Radius 5
(b) Centre (0,0), Radius 15
(c) Centre (0,0), Diameter 4
(d) Centre $(0,0)$, Radius 6
(e) Centre (0,0), Diameter 2
(3) Without using calculator, find the radius of the circle with equation $x^{2}+y^{2}=18$ giving your answer in the form $p \sqrt{q}$.
(4) Sketch the circles with the following equations showing where they cut the coordinate axes. Give any non-integers answers as simplified surds.
(a) $x^{2}+y^{2}=36$
(b) $x^{2}+y^{2}=100$
(c) $x^{2}+y^{2}=20$
(d) $x^{2}+y^{2}=1$
(e) $2 x^{2}+2 y^{2}=50$
(5) A circle has the equation $x^{2}+y^{2}=100$.
(a) Show that the point $P(3,9)$ lies inside the circle.
(b) Find the coordinates of a point Q on the circle where both coordinates are negative,
(6) The diagram below shows the circle with equation $x^{2}+y^{2}=64$ inscribed in a square/ The side lengths of the square are tangents to the circle.

Show that the shaded region has area $64-16 \pi$
(7) The diagram below shows the circle with equation $x^{2}+y^{2}=20$ and part of the line with equation $y=2 x$. The line cuts the circle at the points A and B.

(a) Use simultaneous equations to show that $5 x^{2}=20$
(b) Hence find the x coordinates of A and B.
(c) Use your answer to pat (b) to find the y coordinates of A and B.
(8) The diagram below shows a circle with equation $x^{2}+y^{2}=r^{2}$ and the line with equation $x=a$ and $x=b$. The two lines are tangents to the circle.

Given that $a-b=12$, find the equation of the circle.
(9) The diagram below shows the circle with equation $x^{2}+y^{2}=25$ and the tangent to the circle at the point $P(3,4)$

(a) Show that the gradient of the radius is $\frac{4}{3}$.
(b) Hence, explain why the gradient of the tangent is $\frac{-3}{4}$.
(c) Show that the equation of the tangent is
$y=-\frac{3}{4} x+25$
(10) The diagram below shows the circle with equation $x^{2}+y^{2}=169$ and a tangent drawn to the circle at the point $(-12,5)$

Find the equation of the tangent.
(11) The diagram below shows two circles centre O. Point A lies on the smaller circle and has coordinates $(3,4)$ and point B lies on the large circle and has coordinates $(8,6)$.

Given that A and B can move on the circumference of their circle, find the maximum possible distance $A B$.
(12) A circle has centre $(0,0)$ and radius 10 . A tangent to the ccircle is draw at the point $(6,-8)$. The tangent crosses the x axis at A and the y axis at B.
Find the area of $\triangle A O B$ where O is the origin.
(13) Two concentric circles centres O are shown below.

Given that the point $P(2 \sqrt{2}, \sqrt{3})$ lies on one circles and $Q(-2 \sqrt{3}, 5)$ on the other, show that the shaded area between the circles is 6π.
(14) The diagram below shows a circle centre O. The points A, B and C are all points on the circle and form the tirangle $A B C$.

The points A and B lie on the x axis and a tangent to the circle is drawn at B.

Given that $A C=7$ and $C B=24$, find the equation of the tangent at B.
(15) A circle has equation $x^{2}+y^{2}=108$ and a line has equation $y=\sqrt{3} x$.
(a) Without a calculator, find the exact coordinates of the point where the line intercests the circle.
(b) Explain why the line is a diameter of the circle.

