

Density $=$ Mass \div Volume
Mass $=$ Density \times Volume
Volume $=$ Mass \div Density
Find the missing value x for each question below stating the units for your answer.

Question	Density	Mass	Volume
1	$2 \mathrm{~g} / \mathrm{cm}^{3}$	x	$10 \mathrm{~cm}^{3}$
2	$12 \mathrm{~g} / \mathrm{cm}^{3}$	18 g	x
3	x	108 g	$12 \mathrm{~cm}^{3}$
4	$18 \mathrm{~g} / \mathrm{cm}^{3}$	$54 g$	x
5	$8 \mathrm{~g} / \mathrm{cm}^{3}$	x	$20 \mathrm{~cm}^{3}$
6	x	120 g	$40 \mathrm{~cm}^{3}$

(7) A block of wood has mass 3 kg and volume $400 \mathrm{~m}^{3}$. Find the density of the wood stating the units for your answer. Give your answer in standard form.
(8) A solid sphere has density $20 \mathrm{~kg} / \mathrm{m}^{3}$ and mass 100 kg . Find the volume of the sphere.
(9) A metal rod has volume $6.08 \mathrm{~cm}^{3}$ and density $2 \mathrm{~kg} / \mathrm{cm}^{3}$. Find the mass of the metal.
(10) Complete the following sentence
"A block has \qquad $6 \mathrm{~kg} / \mathrm{m}^{3}$,
\qquad $42 m^{3}$ and \qquad 7 kg "
(111) A cube has density $5 \mathrm{gcm}^{3}$ and mass 320 g
(a) Find the volume of the cube.
(b) Find the total surface area of the cube.
(12) The formula for the volume of a sphere is $V=\frac{4}{3} \pi r^{3}$ where V is the volume and r is the radius. Find the radius of a sphere that has density $4 \mathrm{~kg} / \mathrm{cm}^{3}$ and mass $108 \pi \mathrm{~kg}$.
(13) A rock has mass $2 p$ and volume $4 p$. Write an expression for the density of the rock in terms of p.
(15) A square based pyramid of height 10 cm has density $6000 \mathrm{gm} / \mathrm{cm}^{3}$. Find its mass.

Pressure $=$ Force \div Area
Force $=$ Pressure \times Area
Area $=$ Force \div Pressure
(Force is measured in Newtons (N))

Find the missing value x for each question below stating the units for your answer.

Question	Pressure	Force	Area
1	$3 N / m^{2}$	x	$18 m^{2}$
2	x	$20 N$	$120 m^{2}$
3	$2 N / m^{2}$	$100 N$	x
4	$12 N / m^{2}$	x	$1820 m^{2}$
5	x	$30 N$	$93 m^{2}$

(6) A block has area $4 \mathrm{~cm}^{2}$ and exerts a force of 70 N on the floor. Find the pressure of the block on the floor.
(7) The pressure a single chair leg exerts on the floor is $2 \mathrm{~N} / \mathrm{m}^{2}$. Given that the area of the chair leg is $0.01 \mathrm{~m}^{2}$, find the force of the chair leg on the floor.
(8) Complete the following sentence
"The bottom of a bucket has \qquad $300 \mathrm{~cm}^{2}$ and exerts a \qquad of 40 N on the floor. As a result, the \qquad on the floor is \qquad "
(9) A circular plate is in contact with a table. The pressure on the table is $2 \mathrm{~N} / \mathrm{cm}^{2}$ and the force on the table is 120 N . Find the radius of the plate to 3 SF.
(10) A block of base area y exerts a force of x on a table. Find the pressure on the table in terms of x and y.
(11) A square block of side length $x c m$ exerts a force of $x N$ on a table. Find the pressure on the table as a simplified expression.
(12)* A cylinder with volume $2 \pi x^{3}$ and height $2 x$ exerts a pressure of $y g N$ on a table when rested on its cross section. Find the mass of the cylinder. x and y are constants and g is gravity.

