Differentiation
www.m4ths.com Steve Blades
(1) $y=x^{2}+4 x$

Show that when the rate of change of $y=8$

$$
2(x-2)=0
$$

(5) A curve has equation $y=\sqrt{x}-8 x$
Show that the curve is
stationary when $x=\frac{1}{256}$
(6) $y=\left(x^{\frac{2}{3}}-4\right)\left(x^{\frac{1}{5}}+2\right)$

Find a simplified expression for $\frac{d y}{d x}$.
(2) Given that

$$
y=x^{3}\left(4 x^{2}+x-\frac{5}{x}\right)
$$

Show that

$$
\frac{d y}{d x}=2 x\left(10 x^{3}+2 x^{2}-5\right)
$$

(3) A curve has the equation
$y=\frac{2}{3} x^{3}-2.5 x^{2}-3 x+4$
Show that the curve is
stationary when $x=-0.5$
and when $x=3$.
(4) $y=\frac{4 x^{6}-3 x^{2}-6}{x^{2}}$

Find a simplified expression for $\frac{d y}{d x}$.
(7) A curve has equation
$y=0.25 x^{4}-\frac{8}{3} x^{3}+6 x^{2}$
(a) Show that the curve has

3 stationary points.
(b) Find the coordinates of the stationary points.
(c) Determine the nature of each of the stationary points.
(8) A curve has equation
$y=\left(x^{\frac{1}{2}}-3\right)^{2}$
Show that $\frac{d y}{d x}=1+A x^{n}$
stating the values of A and n.
(9) A cubic curve has equation

$$
y=\frac{10}{3} x^{3}+\frac{1}{2} x^{2}-6 x+2
$$

Find the coordinates of the two stationary points on the curve and determine their nature. Give each coordinate to 3 SF .

$$
\begin{align*}
& \text { (1) } y=x^{2}+4 x \\
& \frac{d y}{d x}=2 x+4 \\
& 8=2 x+4 \\
& 0=2 x-4 \\
& 0=2(x-2) \\
& y=4 x^{5}+x^{4}-5 x^{2} \\
& \frac{d y}{d x}=20 x^{4}+4 x^{3}-10 x \\
& =2 x\left(10 x^{3}+2 x^{2}-5\right) \\
& \text { (3) } \frac{d y}{d x}=2 x^{2}-5 x-3 \\
& S P=0 \text { for } \frac{d y}{d t} \\
& \therefore \quad 2 x^{2}-5 x-3=0 \\
& (2 x+1)(x-3)=0 \\
& x=3, x=-\frac{1}{2} \\
& \text { (4) } y=\frac{4 x^{6}}{x^{2}}-\frac{3 x^{2}}{x^{2}}-\frac{6}{x^{2}} \\
& y=4 x^{4}-3-6 x^{-2} \\
& \frac{d y}{d x}=16 x^{3}+0+12 x^{-3} \\
& =16 x^{3}+12 x^{-3} \\
& \text { or } 16 x^{3}+\frac{12}{x^{3}} \\
& \text { (5) } y=x^{\frac{1}{2}}-8 x \\
& \frac{d y}{y}=\frac{1}{2} x^{-\frac{1}{2}}-8 \\
& 0=\frac{1}{2} x^{-\frac{1}{8}}-8 \\
& 8=\frac{1}{2} x-\frac{1}{2} \\
& 16=x-\frac{1}{2} \\
& \text { (7) } y=\frac{1}{4} x^{4}-\frac{8}{3} x^{3}+6 x^{2} \\
& \frac{d y}{d x}=x^{3}-8 x^{2}+12 x \\
& 0=x\left(x^{2}-8 x+12\right) \\
& 0=x(x-6)(x-2) \\
& \text { sp. } x=0, x=6 x=\text { ? } \tag{24}\\
& \text { (a) whes } x=0 \text { y }=0 \therefore(0,0) \\
& \text { wiun } x=6 \quad y=-36 \therefore \quad(6,-36) \\
& \text { whis } 4 x=2 y=\frac{20}{3} \therefore\left(2, \frac{20}{3}\right) \\
& \text { (c) } \frac{d y}{d x^{2}}=3 x^{2}-16 x+12 \\
& \text { wher } x=0 \frac{d y}{d t}=12 \\
& \therefore \text { Min } \\
& \text { wher } x-6 \frac{d y}{d x^{2}}=24 \\
& \begin{array}{l}
\therefore \text { MIM } \\
\text { Wha } x=7 \frac{d /}{d / 2}-8
\end{array} \\
& \therefore \operatorname{mox} \\
& \text { (8) } y=\left(x^{\frac{1}{2}-3}\right) /\left(x^{\frac{1}{2}-3}\right) \\
& y=x-6 x^{-2}+9 \\
& d y=1-3 x^{-\frac{1}{2}} \\
& A=-3 \quad n=-\frac{1}{2} \\
& \text { (9) } \frac{d y}{d x}=10 x^{2}+x-6 \\
& 10 x^{2}+x-6=0 \\
& x=\frac{-1+\sqrt{24}}{20} \\
& x=\frac{-1-\sqrt{241}}{2 c} \\
& \text { when } x=\frac{-1+\sqrt{24}}{10} \\
& y=-0.8164 \\
& \therefore\left(\frac{-1+201}{27},-0.817\right) \\
& \text { whus } x=-\frac{1-\sqrt{2 u L}}{20} \\
& y=5.42 \\
& \frac{d y}{d x^{2}}=70 x+1 \\
& \text { whn } x=\frac{-1+\sqrt{2}}{20} \\
& \frac{d y}{d x}>0 \therefore \text { mina } \\
& \text { lim } x=-\frac{1-\sqrt{261}}{20} \\
& \frac{d^{2} y}{d t^{2}}<0 \text { in max } \\
& \text { (10) } y=x^{-\frac{1}{3}}+27 x \\
& \frac{d y}{d x}=-\frac{1}{3} x^{-\frac{5}{3}}+27 \\
& 0=-\frac{1}{3} x^{4} / 3+27 \\
& x^{4} 3=\frac{1}{81} \\
& \begin{array}{l}
x=\frac{1}{81} \frac{3 / 4}{4} \quad \text { on } \quad \frac{1}{27}
\end{array} \\
& \begin{array}{l}
\frac{d^{2}}{d x^{2}}=\frac{4}{4}-x^{-7 / 3} \\
\therefore \begin{array}{l}
\text { min as } \\
x=(27]^{2 /} \\
x
\end{array}>0 \text { for }
\end{array}
\end{align*}
$$

