(1) Write 4 - 4i in the form $r(\cos \theta + i \sin \theta)$

(2) the complex numbers z_1 and z_2 are such that $z_1 = -3 + 4i$ and $|z_1z_2| = 10$. Given further that $\arg(z_2) = -\pi$,

(a) Express $z_1 - z_2$ in the form a + bi.

(b) Plot $z_1 - z_2$ on an Argand diagram.

(3) The complex numbers a + bi and c + di lie in the region which satisfies:

$$\left\{z \in \mathcal{C} \colon |z - 4 - 3i| \le 4\right\} \cap \left\{z \in \mathcal{C} \colon \frac{\pi}{4} \le \arg(z - 4 - 3i) \le \frac{3\pi}{4}\right\}$$

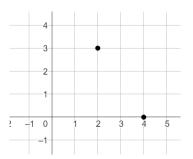
Find the maximum value of c - a in the form $p\sqrt{q}$.

(4) A cubic equation has the roots α , β and γ . Given that $\sum \alpha = 6$, $\sum \alpha \beta = 25$ and $\alpha \beta \gamma = 82$, find: (a) $\alpha^2 \beta^2 \gamma^2$ (b) $\alpha^2 + \beta^2 + \gamma^2$ (c) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$ (d) An equation with integer coefficients that has the roots $\alpha - 3$, $\beta - 3$ and $\gamma - 3$.

(5) Find possible values of a, b, c, d and e for the sum given below

$$\sum_{r=2n+1}^{4n} r^2 = an(bn+c)(dn+e)$$

(6) A quartic equation has roots α , β , γ and δ . The two points shown on the Argand diagram below represent roots of the quartic equation.



Given that the quartic equation can be written in the form $(x - p)^2(x^2 + qx + r) = 0$, show that $\alpha\beta\gamma\delta = 208$.

(7) Show that

$$\sum_{r=1}^{n} 12r(r+1)(r-1) = 3n(n+2)(n^2-1)$$