(1) The complex number z is represented by the point P on the Argand diagram. Given that |z + 4i| = 2, find the range of values of $\arg(z + 2 + 2i)$ in the interval $(-\pi, \pi)$.

(2) A quartic equation has roots α , β , γ and δ .

Two of the roots of the equation are shown on an Argand diagram below.

Find the value of $\sum \alpha \beta$.

(3) Find a fully simplified expression for

$$\sum_{r=1}^{2n} (r-1) \left(r^2 + r + 1 \right)$$

(4) The equation $3x^3 - x + 1 = 0$ has roots α, β and γ . Show that $\alpha^3 + \beta^3 + \gamma^3 + 1 = 0$

(5) The complex number z satisfies |z + 2 + 4i| = |z - 2 - 8i| and |z| = 6.

Express the possible values of z in the form $r(\cos \theta + i \sin \theta)$ giving any non-exact values to 3SF.