## Matrices - www.m4ths.com - Steve Blades

| $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ | $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ | $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ |
| :---: | :---: | :---: |
| The identity matrix | Reflection in the $x$ axis | Reflection in the $y$ axis |
| $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ | $\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$ | $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ |
| Reflection in the line $y=x$ | Reflection in the line $y=-x$ | Rotation $90^{0} \mathrm{~A} / \mathrm{C}$ about $O$ |
| $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$ | $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ | $\left(\begin{array}{cc}m & 0 \\ 0 & m\end{array}\right)$ |
| Rotation $180^{\circ}$ about $O$ | Rotation $\theta^{0} \mathrm{~A} / \mathrm{C}$ about $O$ | Enlargement scale factor $m$ <br> centre $O$ |

(1) The vertices of rectangle $R$ are $(0,0),(0,4),(3,4)$ and $(3,0)$
(a) Write the coordinates in a $2 \times 4$ matrix.
(b) Matrix $T$ represents an enlargement scale factor 3 centre $O$. Using matrix multiplication, find the vertices of the image of $R$. (The image is called $R^{\prime}$ )
(c) Matrix $M$ represents a reflection in the line with equation $y=x$. Use matrix multiplication to find the vertices of the $R$ under $M$.
(2) The unit square is shown below.

(a) Write down the coordinates of the vertices of the square.
(b) Use matrix multiplication to show that a reflection in the $y$ axis followed by a reflection in the $x$ axis produces the same transformation as a rotation of $180^{\circ}$.
(3) The matrix $M$ enlarges a shape by scale factor 4 centre $O$.
(a) Write down the matrix $M$.

The point $P$ lies in the $x, y$ plane has coordinates $(2,-3)$
(b) Find the image of point $P\left(P^{\prime}\right)$ under the transformation matrix $M$.
(c) The point $P$ is reflected in the line $y=-x$ followed by being reflected in the $x$ axis.

Using matrix multiplication show that the coordinates of the point $P$ after the combined transformation are $(3,2)$.
(4) The point $Q$ has coordinates $(4,-4)$
(a) Show that point $Q$ lies on the line with equation $y=-x$
(b) Show that the image of $Q$ also lies on the line $y=-x$ under the transformation matrix $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$.
(c) State fully the transformation that the matrix $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ produces.
(5) Show that the point with coordinates $(r, s)$ remains invariant under the identity matrix.
(6) The vertices of the triangle $A$ can be written in a $2 \times 3$ matrix.

(a) Write down the $2 \times 3$ matrix.
(b) Find the matrix which rotates a shape $90^{\circ}$ clockwise about $O$.
(c) Using matrix multiplication, apply the transformation in part (b) to triangle $A$ and write down the coordinates of the vertices of the image of $A$.
(7) Find the matrix that reflects in the $x$ axis followed by a reflection in the line $y=x$
(8) The matrix $M=\left(\begin{array}{ll}p & 0 \\ 0 & q\end{array}\right)$ transforms the matrix $\left(\begin{array}{ccc}0 & 3 & 5 \\ 1 & -5 & -5\end{array}\right)$ to the $\left(\begin{array}{lll}0 & -3 & -5 \\ 1 & -5 & -5\end{array}\right)$
(a) Find the values of $p$ and $q$.
(b) Hence, describe fully the transformation produced by $M$.
(c) Explain why all points under the transformation of $M^{2}$ remain invariant.
(9) Show that applying the rotation matrix for a $90^{\circ}$ rotation $\mathrm{A} / \mathrm{C}$ about $O$ twice produces the same matrix for rotating a point by $180^{\circ}$ about $O$.
(10) Explain what the transformation matrix $\left(\begin{array}{cc}-3 & 0 \\ 0 & -3\end{array}\right)$ produces.

