

WORKING AT B/C

(1) Write each of the following in terms of $\log_2 x$, $\log_2 y$ and $\log_2 z$.

(a) $\log_2\left(\frac{x^6}{y}\right)$ (b) $\log_2 x^7 z y^3$ (c) $\log_2 8x z^3$

(2) Solve the equation

 $\log_2(5x-6) + \log_2(3x+10) = 6$

Giving your answer as an integer.

(3) (a) Show that the equation

 $2\log_3(2x+1) = 5 - \log_3(x-1)$,

Can be written as $(2x + 1)^2(x - 1) = 243$

(b) Hence, verify the solution x = 4 is a solution to the equation $2\log_3(2x + 1) = 5 - \log_3(x - 1)$

WORKING AT A*/A

(1) (a) Find the solution to the equation

 $2\log_4(x-1) = 0.5 + \log_4(x+3), x \in R$

Showing step by step workings.

(b) Explain why there is only one solution to the equation.

(2) Beryl is trying to find the real solutions to the equation

 $a\log_{h}(4x+3) = c, x \in R$

Find the set of values for which x is valid.

(3) (a) Given that $p = \log_8 x$ and $q = \log_8 y$, write each of the following in terms of p and q

(i) $\log_8 2x^4 y^{\frac{1}{3}}$

(ii) $\log_8 \frac{x^9}{4\sqrt{y}}$

(b) Write the following as a single logarithm $100 + 2\log x - 0.5\log y$

A Level Maths Year 1 Pure - Steve Blades 2023-2024 © - Full worked solutions are available at www.m4ths.com