and has		
W W W . M 4 T H S . C O M A LEVEL MATHS (83) Logarithms (Simplifying & Evaluating) WORKING AT D/E (1) Rewrite each of the following using a logarithm.	WORKING AT B/C (1) Without a calculator, find the value of x in each: (a) $\log_2 x = 3$ (b) $\log_3 1 = x$ (c) $\log_4 2 = x$ (d) $\log_3 3 = x$ (e) $\log_6 \left(\frac{1}{36}\right) = x$ (f) $\log_5 0.2 = x$ (g) $\log_2(x-1) = 4$ (h) $\log_5(2x) = 4$	WORKING AT A*/A (1) Given that $x > 0$, without a calculator, find the value of x in each: (a) $\log_x 9 = 2$ (b) $\log_4(3 - x) = 1$ (c) $\log_5 0.04 = x - 3$ (d) $\log_4 1 = 2x - 1$ (e) $\log_x 0.125 = -3$ (f) $\log_8 2 = x + 7$
(a) $3^2 = 9$ (b) $5^3 = 125$ (c) $8^2 = 64$ (d) $4^{-1} = \frac{1}{4}$ (e) $9^0 = 1$ (f) $8^{\frac{2}{3}} = 46^{-1}$ (2) Without a calculator, find the value of each:	 (2) Given that log x is the same as log₁₀ x, without a calculator, find the value of each. (a) log 100 (b) log 0.1 (c) log 1 	(2) Without using a calculator, <u>estimate</u> the value of x in each: (a) $\log_3 25 = x$ (b) $\log_4 14 = x$ (c) $\log_2 x = 3.5$ (b) $\log 110 = x$
(a) $\log_2 8$ (b) $\log_3 81$ (c) $\log_4 16$ (d) $\log_5 125$ (e) $\log_2 32$ (f) $\log_7 7$		(3) Alan is trying to solve the inequality below for <i>x</i> . $(\log_8 0.5) x > 14$ He writes: $x > \frac{14}{(\log_8 0.5)}$
(3) Use your calculator to find the value of each to 3SF.	(3) Explain why $\log_a a^b = b$ for when <i>a</i> is positive and $a \neq 1$.	x > -42 Is he correct? You must justify your answer.
(a) $\log_2 27$ (b) $\log_7 3$ (c) $\log_{0.1} 0.05$		A À
A Level Maths Year 1	Pure - Steve Blades 2023-2024 © - Full worked solutions are available	at www.m4ths.com