(73) Vector Geometry

WORKING AT D/E

(I) Given that

$$(p-1)i + (q+2)j + rk = -8i + 22j$$

find the values of p, q and r

WORKING AT B/C

(1) ABCD is a trapezium.

$$\overrightarrow{OA} = 2\mathbf{i} - \mathbf{j} + 4\mathbf{k}$$

$$\overrightarrow{OB} = -3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$$

$$\overrightarrow{OC} = -\mathbf{i} + 7 \mathbf{k}$$

$$\overrightarrow{OD} = p\mathbf{i} + q\mathbf{j} + r\mathbf{k}$$

Given that $\overrightarrow{AD} = 2\overrightarrow{BC}$

- (a) Find the values of p, q and r
- (b) Hence, find the exact lengths of the parallel sides in the trapezium.

WORKING AT A*/A

$$(1) \overrightarrow{OA} = \begin{pmatrix} -1\\2\\4 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} 2\\-3\\1 \end{pmatrix}, \overrightarrow{OC} = \begin{pmatrix} 6\\7\\8 \end{pmatrix}$$

Explain why $0 < \cos(ABC) < 1$

(2)
$$\overrightarrow{OA} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$$
, $\overrightarrow{OB} = \begin{pmatrix} 5 \\ 2 \\ 0 \end{pmatrix}$, $\overrightarrow{OC} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$ and $\overrightarrow{OD} = \begin{pmatrix} -3 \\ 0 \\ 4 \end{pmatrix}$.

- (a) Find the vectors:
- (i) \overrightarrow{AB} (ii) \overrightarrow{BC}
- (iii) \overrightarrow{DC}
- (iv) \overrightarrow{AD}
- (b) Find (i) $|\overrightarrow{AB}|$ (ii) $|\overrightarrow{BC}|$ (iii) $|\overrightarrow{DC}|$ (iv) $|\overrightarrow{AD}|$
- (c) Hence, explain why ABCD is a parallelogram.