(73) Integration (Basic Expressions (x^n)

(1) Find a simplified expression for y, including a constant of integration for each:

(a)
$$\frac{dy}{dx} = 4x$$

$$(b)\frac{dy}{dx} = 2x^2$$

(a)
$$\frac{dy}{dx} = 4x$$
 (b) $\frac{dy}{dx} = 2x^2$ (c) $\frac{dy}{dx} = 4x^3 - 8x$

(d)
$$\frac{dy}{dx} = 5x^2 - x + 3$$

$$(e)\frac{dy}{dx} = \frac{5}{6}x^{\frac{1}{2}}$$

(2) Find a simplified expression for f(x), including a constant of integration for each:

(a)
$$f'(x) = x^{\frac{3}{2}}$$

(a)
$$f'(x) = x^{\frac{3}{2}}$$
 (b) $f'(x) = 5x^{-2}$ (c) $f'(x) = \sqrt{x}$

$$(c)f'(x) = \sqrt{x}$$

$$(3)\frac{dy}{dx} = (3x+2)^2$$

(a) Show that $\frac{dy}{dx}$ can be written in the form

$$Ax^2 + Bx + C$$

(b) Hence find a simplified expression for y.

WORKING AT B/C

(1) Find a simplified expression for y, including a constant of integration for each:

$$(a)\frac{dy}{dx} = \frac{2}{x^2} + \sqrt[3]{x}$$

(a)
$$\frac{dy}{dx} = \frac{2}{x^2} + \sqrt[3]{x}$$
 (b) $\frac{dy}{dx} = 8x^{-0.25} - x^{2.5}$

(c)
$$\frac{dy}{dx} = x\sqrt{x}$$

(c)
$$\frac{dy}{dx} = x\sqrt{x}$$
 (d) $\frac{dy}{dx} = \frac{24}{x^{\frac{2}{3}}} + 3x^{\frac{2}{5}}$

(2)
$$f'(x) = \frac{x^2 - 3x + 8}{\sqrt{x}}$$

(a) Show that f(x) can be written in the form $f'(x) = Ax^p + Bx^q + Cx^r$

(b) Hence, find f(x) giving each coefficient as a simplified fraction.

(3) Given that $\frac{dy}{dx} = \frac{(x^3 - 1)^2}{x^3}$ show that $y = \frac{1}{4}x^4 - 2x - \frac{1}{2x^2} + c$

WORKING AT A*/A

$$(1) \frac{dy}{dx} = \frac{(\sqrt{x}+2)^2}{x^3}$$

Find a simplified expression for y.

(2) g(x) has gradient function $\frac{3}{x\sqrt{x}} - x$. Find a general solution for g(x).

(3) Given that $f'(x) = (x + x^{\frac{1}{3}})^3$ Find a general solution for f(x) giving each coefficient as a simplified fraction.