(65) Differentiating x^n (Basic Powers of x)

WORKING AT D/E

(1) Find an expression for $\frac{dy}{dx}$ for each of the following:

$$(a) y = x^4$$

(b)
$$y = x^7$$

(a)
$$y = x^4$$
 (b) $y = x^7$ (c) $y = 2x^3$ (d) $y = 5x^4$ (e) $y = x^{\frac{3}{2}}$ (f) $y = x^{-1}$

(d)
$$y = 5x^4$$

(e)
$$y = x^{\frac{3}{2}}$$

f)
$$y = x^{\frac{1}{2}}$$

(g)
$$y = -4x^7$$
 (h) $y = 8x^{\frac{1}{4}}$ (i) $y =$

(h)
$$y = 8x$$

(i)
$$y \Rightarrow \sqrt{x}$$

(2) Find an expression for f'(x) for each of the following:

$$(a) f(x) = x^{\frac{4}{5}}$$

(a)
$$f(x) = x^{\frac{4}{5}}$$
 (b) $f(x) = 3x^{\frac{1}{3}}$ (c) $f(x) = \frac{6}{x}$

(c)
$$f(x) = \frac{6}{x}$$

(d)
$$f(x) = -x^{-\frac{2}{5}}$$
 (e) $f(x) = \frac{1}{2x^2}$

(e)
$$f(x) = \frac{1}{2x^2}$$

WORKING AT B/C

(1) Find a simplified expression for $\frac{dy}{dx}$ for each of the following:

(a)
$$y = x\sqrt{x}$$

(b)
$$y = \frac{x^7}{2x}$$

(a)
$$y = x\sqrt{x}$$
 (b) $y = \frac{x^7}{2x}$ (c) $y = \frac{4}{3\sqrt[5]{x}}$

|WORKING AT A*/A

(1) Find a simplified expression for h'(t) given that $h(t) = \sqrt[4]{16t^8} \times \frac{3}{t^{0.25}}$

(2) Find the gradient of the curve with equation $v = 2\sqrt[4]{t}$ when t = 16.

of the following: (a) $f(x) = \left(2x^{\frac{7}{2}}\right)^4$ (b) $f(x) = \frac{8x}{4\sqrt{x^3}}$

(2) Find a simplified expression for f'(x) for each

(a)
$$f(x) = \left(2x^{\frac{7}{2}}\right)^4$$

(b)
$$f(x) = \frac{8x}{\sqrt[4]{x^3}}$$

(3)
$$f(x) = 2x^2$$

Find the value of x for which $f'(x) = 64$

(3) Find an expression for $\frac{dP}{dt}$ given $P = 0.5t\sqrt{t}$