WWW.M4THS.COM

(63) Integration by Inspection (Reverse Chain Rule)

WORKING AT D/E

(1) Find the integral of each of the following 'by inspection'

(a)
$$\int 2e^{2x} dx$$
 (b) $\int \frac{2x}{x^2+1} dx$ (c) $\int 4(2x+1)^5 dx$

(d)
$$\int -3\sin x (\cos x + 1)^2 dx$$
 (e) $\int 8\sin 2x \, dx$

WORKING AT B/C

- (1) (a) Using the formula book, write down $\frac{d}{dx} \sec x$.
- (b) Hence, find $\int \tan x \sec^6 x \, dx$

WORKING AT A*/A

(1) Find $\int \cot 2x \csc^6 2x \ dx$

(2) Show that
$$\int_0^1 \frac{e^{2x}}{e^{2x}+1} dx = \ln \sqrt{\frac{e^2+1}{2}}$$

(3) Show that $\int_{\underline{\pi}}^{\frac{n}{4}} \csc^2 x \cot^3 x \, dx = 2$

(2) Evaluate $\int_0^1 2x(2x^2 - 3)^5 dx$ showing each step of your workings.

(2) Explain why $\int (\cos x) \sin^5 x \, dx = \frac{1}{6} \sin^6 x + c$

(3) Show that $\int_0^{\frac{\pi}{2}} -\sin x \cos^3 x \, dx = -0.25$

(3) Show each of the following:

(a)
$$\int_{1}^{2} \frac{4x-1}{2x^{2}-x} dx = \ln 6$$

(b)
$$\int_0^3 4xe^{x^2} dx = 2e^9 - 2$$