WWW.M4THS.COM A LEVEL MATHS

(62) Application of Vectors

WORKING AT D/E

Alan travels 6m due west from a fixed point *Q* to the point *A*. Alan then moves directly south from *A* 8m to the point *B*.
 (a) Find the position vectors *OA* and *AB* using i and

j notation.

(b) Hence, find \overrightarrow{OB} .

(c) Show that $\left|\overline{OB}\right| = 10$ m.

(d) Find the bearing of B from O

The point *C* is 22m due east of *B*. (e) Find \overrightarrow{OC} using **i** and **j** notation.

Alan walks the perimeter of the triangle *OBC*. (f) Find the distance he walks in total in exact form.

Beryl is standing 14m due north of the point *C*. (g) Find the bearing of *C* from *O*.

Beryl now walks back to O from C at a constant speed of $2.4ms^{-1}$.

(h) Show that it will take approximately 7 seconds for Beryl to reach *O* from *C*.

WORKING AT B/C

(1) Alan walks from the fixed point *O* to the point *A* where $\overrightarrow{OA} = \begin{pmatrix} 5\sqrt{3} \\ 5 \end{pmatrix}$ m

(a) Show that the bearing of A from 0 is 060° .

(b) Find the distance Alan walks.

Alan now walks directly south to the point *B*.

(c) Given that *B* is directly east of *O*, write down \overrightarrow{OB} in the form ai.

From *B*, Alan walks to the point *C*.

(d) Given that $\overrightarrow{BC} = \begin{pmatrix} -12\sqrt{3} \\ 10 \end{pmatrix}$ m, find the bearing of *C* from *O*.

(e) Alan now walks back to *O*. Find the distance *OC* to 3 significant figures.

WORKING AT A*/A

(1) Beryl walks 20m on a bearing of 045[°] from a fixed point *O* to the point *A*.
(a) Find *OA* in the form ^p_q where *p* and *q* are exact values.

Beryl now walks from the point *A* to the point *B*. (b) Given that *B* is 10m from *A* and on a bearing of 135^o from *A*, find \overrightarrow{OB} in column form.

(c) Find $|\overrightarrow{OB}|$.

(d) Find the bearing of B from O.

Point D is 1m from O.

(e) Given that \overrightarrow{OD} is in the direction to the vector $-3\mathbf{i}$ - $4\mathbf{j}$, find \overrightarrow{OD} in the form $(\mathbf{a}\mathbf{i} + \mathbf{b}\mathbf{j})\mathbf{m}$ where \mathbf{a} and \mathbf{b} are simplified fractions.

The point *E* is due east of *D* and south of *O*. (f) Write down \overrightarrow{OE} using **i** and **j** notation.

orked solutions are available at www.m4ths.com

A Level Maths Year 1 Pure - Steve Blades 2023-2024 © - Full worked solutions are available at www.m4ths.com