WWW.M4THS.COM

(60) Integrating Standard Functions (Logs and Trig)

WORKING AT D/E

- (1) Use the formula book to find the following integrals:
- (a) $\int \sec^2 x \ dx$
- (b) $\int \sec x \tan x \, dx$
- (c) $\int \csc^2 x \ dx$
- (d) $\int -\csc x \cot x \ dx$
- (2) Considering the derivatives of $\sin x$, $\cos x$, $\ln x$ and e^x find the following integrals:
- (a) $\int \cos x \, dx$
- (b) $\int \sin x \ dx$

(c) $\int \frac{2}{x} dx$

- (d) $\int e^{3x} dx$
- (3) Using the formula book and the results above, find each integral below:

(a)
$$\int \tan x - \frac{1}{x} + e^x dx$$

(b)
$$\int -2 \csc^2 x - \sin x \ dx$$

$$(c) \int 4\sec^2 x - e^x - x \ dx$$

(d)
$$\int \cot 2x - x^{-2} - \cos x \, dx$$

WORKING AT B/C

- (1) (a) Show that $\frac{4-x^2}{x} \equiv \frac{A}{x} + Bx$
- (b) Hence, find $\int \frac{4-x^2}{x} dx$
- (c) Simplify $\sin x (1 + \cot x)$
- (d) Hence, find $\int \sin x (1 + \cot x) dx$

- (2) (a) Find $\int \frac{5}{x} \frac{1}{\sin^2 x} dx$
- (b) (i) Show that $\frac{\sin x}{\cos^2 x} \equiv \sec x \tan x$
- (ii) Hence, find $\int \frac{\sin x}{\cos^2 x} dx$
- (3) Find the value of each giving your answers in exact form where appropriate. You must show full workings:

(a)
$$\int_{0}^{\frac{\pi}{4}} x - \sec^2 x \ dx$$

(b)
$$\int_{1}^{3} \frac{4}{x} - e^{x} + x \ dx$$

(c)
$$\int_{\frac{\pi}{2}}^{\frac{\pi}{4}} \sin x - \csc^2 x \ dx$$

(d)
$$\int_{1}^{6} \frac{8-3x}{x} dx$$

WORKING AT A*/A

(1) Evaluate $\int_0^{\frac{\pi}{4}} \sec \theta (\sec \theta - \sin \theta) d\theta$ giving your answer in the form $\ln Ae$ where A is a simplified surd.

(2) Show that $\int_{1}^{2} \frac{(1-x)^{2}}{2x} dx = \text{Aln } B + \frac{C}{D}$ where A, B, C and D are rational constants to be found.

(3) Show that

$$\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \csc x (\cos x + \sin x)^2 dx = 2 - \sqrt{3} + \ln \sqrt{3}$$