W.M4THS.COM LEVEL MATHS (58) Numerical Methods Newton-Raphson Method WORKING AT D/E (1) $f(x) = e^x - x - 6$, $x \in R$ A root to the equation is α (a) Show that $-6.0 < \alpha < -5.9$ Part of the graph of y = f(x) is shown below f(x)(b) Mark *a* on the diagram (c) Find an expression for f'(x)(d) The Newton-Raphson formula is given in the **formula book.** Using $x_0 = -5.5$ as an initial approximation for α , use the Newton-Raphson method to find x_1, x_2, x_3 and x_4 , giving each approximation to 6 dp. (e) Show that $\alpha = -5.9975$ correct to 4 decimal places. (f) β is the only other root of f(x). Explain why $\beta > 0.$ (g) Mark on the diagram where f'(x) = 0

WORKING AT B/C

(1) $g(x) = \cos(x) - x$, $x \in R$ where x is measured in radians.

Part of the graph of y = g(x) is shown below

(a) Mark any point on the diagram where it would not be appropriate to use the Newton-Raphson method to locate a root to the equation.

(b) Show that a root, α , of the equation g(x) = 0 is such that $0.7 < \alpha < 0.8$

(c) Using $x_0 = 0.85$ as an initial approximation for β , use the Newton-Raphson method to find x_1 ,

 $x_{2,}, x_3$ and x_4 , giving each approximation to 4 dp.

(d) Show that $\alpha = 0.739$ to 3 SF.

(e) By considering the range of cos(x) explain why there are no more roots of g(x)

(f) Explain why there are more stationary points on the curve y = g(x)

WORKING AT A*/A

(1) $f(x) = 3x^2 - 4x - \ln 2x$, x > 0Part of the curve of y = f(x) is shown in the diagram below.

The two roots to the equation are α and β where $\beta > \alpha$. (a) Show that $0.2 < \alpha < 0.3$ (b) Show that $1.5 < \beta < 1.6$ (c) The curve has a stationary point in the interval $\gamma < x < \delta$. Write down possible values of γ and δ . (d) Show that f(x) is stationary in the interval 0.8 < x < 0.9

(e) Cyril wants to find the root β to 3 decimal places. He decides to use the Newton-Raphson method to locate the root. He takes $x_0 = 0.9$. Comment on his approach.

(f) Using $x_0 = 1.3$ as an initial approximation for β , use the Newton-Raphson method to find x_1, x_2, x_3 and x_4 , giving each approximation to 4 dp. (g) State a suitable starting value for x_0 to find an approximation for finding α using the Newton-

Raphson method,

(h) Explain what the formula $x_{n+1} = x_n - \frac{1}{2}$ could be used for.

A Level Maths Year 2 Pure - Steve Blades 2023-2024 © - Full worked solutions are available at www.m4ths.com