WWW.N4THS.COM

(57) Numerical Methods Iteration to Locate Roots

WORKING AT D/E

(1) f(x) = x² - 4x + 1, x∈R
(a) Show that there is a root α to f(x) in the interval [3.7, 3.8]
(b) Using the iterative formula x_{n+1} = √4x_n - 1, x₀ = 4, to find the value of x₁, x₂ and x₃ giving your answers to 5 decimal places.
(c) State the suitability of the iterative formula for locating α.

(d) Prove that $\alpha = 3.732$ correct to 3 decimal places.

(e) Doris decides to use the use the iterative formula $x_{n+1} = \frac{x_n^2 + 1}{4}$ to locate the other root of the f(x). Taking $x_0 = 1$, show that the other root $\beta \approx 0.2679$

 $(2) f(x) = x^5 + 5x^2 - 3, \ x \epsilon R$

(a) Show that there is a root α to the equation $x^5 + 5x^2 - 3 = 0$ in the interval 0.7 < x < 0.8

(b) Show that f(x) = 0 can be written as $x = \sqrt{\frac{3-x^5}{5}}$ (c) Taking $x_0 = 0.5$, use the iterative formula $x_{n+1} = \sqrt{\frac{3-x_n^5}{5}}$ to find the values of x_1, x_2 and x_3 giving your answers to 5 decimal places.

(d) Prove that $\alpha = 0.744$ correct to 3dp.

WORKING AT B/C

(1) $f(x) = x - \sin 2x$, $x \in R$ (a) Show that there is a root α to f(x) in the interval [0.9, 1.0]f(x) = 0 can be written as either: (i) $x = \frac{\sin^{-1}x}{2}$ (ii) $x = \sin 2x$ (b) Explain why using the iterative formula $x_{n+1} = \frac{\sin^{-1}x_n}{2}$, with $x_0 = 0.8$ doesn't locate α . (c) Using the iterative formula $x_{n+1} = \sin 2x_n$ with $x_0 = 0.8$, find the values of x_1, x_2 and x_3 giving your answers to 5 decimal places. (d) Prove that $\alpha = 0.9477$ correct to 4 S.F.

(2) f(x) = 2x² - 2x + e^{5x}, xeR
(a) Find f'(x)
f(x) has a stationary point β.
(b) Use your answer to part (a) to show that the x coordinate of β is in the interval (-0.2, -0.1)
(c) Use the iterative formula x_{n+1} = 0.2 ln (^{2-4x_n}/₅) with x₀ = -0.1 to find the values of x₁, x₂, x₃, x₄, x₅ and x₆ giving your answers to 5 decimal places.
(d) Prove that the stationary point on the curve with equation y = f(x) has x coordinate -0.135 correct to 3 S.F
(e) Explain why the iterative formula x_{n+1} = ^{2-5e^{5xn}}/₄, x₀ = -0.1 doesn't locate the x

WORKING AT A*/A

(1) (a) On the same set of axes, sketch the graphs of $y = 1 - \ln(x + 1)$, x > -1 and y = x, $x \in R$ (b) Explain why there is one root to the equation $x = 1 - \ln(x + 1)$ The function $f(x) = \ln(x + 1) + x - 1$, x > -1(c) Show that there is a root α to f(x) in the interval [0.5, 0.6] (d) Using the iterative formula $x_{n+1} = 1 - \ln(x_n + 1)$, $x_0 = 0.5$ find the values of x_1, x_2, x_3, x_4, x_5 and x_6 giving your answers to 5 decimal places. (e) Using your answer to part (d) explain why the iterations found in part (c) create a cobweb diagram.

 $y = e^{4x} - 3$ and y = x $f(x) = e^{4x} - 3 - x$, $x \in R$ (b) Using your answer to part (a), explain why there is a root to the equation f(x) for x > 0(c) Show that the root $0.2 < \alpha < 0.3$ (d) Show that the equation f(x) = 0 can be written as $e^{4x} - 3 = x$ (e) Doris uses the iterative formula $x_{n+1} = e^{4x_n} - 3$, $x_0 = 0.3$ to try and locate α . Find the values of x_1, x_2, x_3 and x_4 giving your answers to 5 decimal places.

(2) (a) On the same set of axes, sketch the graphs of

(f) With the aid of a diagram, comment on the likely success of Doris' attempt.

A Level Maths Year 2 Pure - Steve Blades 2023-2024 © - Full worked solutions are available at www.m4ths.com

coordinate of β