

WORKING AT B/C

(1) A sphere with radius r has volume, $V = \frac{4}{2}\pi r^3$ The volume of the sphere is increasing at a constant rate of $16cm^3s^{-1}$

Find the rate of change of the radius when the radius is 2*cm*.

(2) A curve has equation y = f(x), x > 0. The gradient of the curve at any point on the curve is proportional to xy.

Point *P* on the curve has coordinates (3, -4) and the gradient at P is $\frac{1}{2}$...

Show that
$$\frac{dy}{dx} = -\frac{xy}{36}$$

(3) A circle has area A, circumference C and radius r. The area of the circle is increasing at a constant rate of $6cm^2s^{-1}$

(a) Find a formula for A in terms of r.

(b) Find a formula for *C* in terms of *r*.

(c) Show that the rate of change of the circumference when the radius is 4cm is $1.5cms^{-1}$

WORKING AT A*/A

(1) A solid ice shaped cylinder with height 10cm and base radius r is melting at a constant rate of $1 cm^3 s^{-1}$

Show that an expression for the rate at which the surface area of the ice shaped cylinder is decreasing can be written as $\frac{5+r}{5\pi}$

(2) A solid cube has volume V and surface area A. After t seconds the volume of a solid cube is increasing at the rate of $8cm^3s^{-1}$.

Show the rate at which the area increases satisfies the differential equation $A^{0.5}\left(\frac{dA}{dt}\right) = 32\sqrt{6}$

