

(2) A curve has parametric equations $x = -\cos t$, $y = \sin t$, $0 < t < \frac{\pi}{2}$

(a) Find an expression for $\frac{dy}{dx}$ in terms of *t*. (b) Hence, show that the equation of the tangent to the curve at the point where $t = \frac{\pi}{4}$ is $y = x - \sqrt{2}$

(3) A curve has parametric equations $x = \ln t$, $y = t^2$, t > 0

(a) Show that $\frac{dy}{dx} = 2t^2$

(b) Hence, find the equation of the tangent at the point where t = 1

WORKING AT B/C

(1) A curve has parametric equations $x = 8 - t^2$, $y = t^3$, $t \in R$

Find the equation of the normal to the curve at the point where t = 4 in the form ax + by + c = 0

(2) The curve C has parametric equations x = 2 sin t - t, y = cos t + 3, 0 < t < π/2
(a) Find an expression for dy/dx in terms of t.

(b) Hence, find the coordinates of the stationary point on the curve.

(3) A curve has parametric equations $x = \ln t$, $y = t^2 - 8t$, t > 0

Show that the only stationary point on the curve has coordinates $(2 \ln 2, -16)$

WORKING AT A*/A

(1) A curve has parametric equations $x = 3\cos 4t - 4$, $y = \sin 2t + 3$, $0 < t < \frac{\pi}{6}$

(a) Show that $\frac{dy}{dx} = k \operatorname{cosec} 2t$ where k is a constant to be found.

(b) Show that there is a point on the curve where the tangent has a gradient of $-\frac{1}{6}$.

(2) The curve C has parametric equations

 $x = 2\cos\frac{t}{2}$, $y = 1 - \sin 2t$, $0 \le t \le \pi$

Point *P* on the curve *C* has coordinates $(\sqrt{2}, 1)$

(a) Find the value of t at the point P.

(b) Find the equation of the tangent to the curve at the point *P* in the form ax + by = c

(3) A curve has parametric equations $x = 4t^2$, $y = t^2 - 8t$, $t \in R$

(a) Find an equation for the tangent to the curve at the point where t = 0.5

(b) Prove that this is the only point the where the tangent meets the curve.

A Level Maths Year 2 Pure - Steve Blades 2023-2024 © - Full worked solutions are available at www.m4ths.com