

(3) Using the formula book, find an expression for g'(x) for each giving your answer in its simplest form.

(a)
$$g(x) = \frac{x}{\cos x}$$
 (b) $g(x) = \frac{x^2}{e^{3x}}$ (c) $g(x) = \frac{\ln x}{\ln x}$

(1) A curve has the equation $y = \frac{2x-1}{e^x}$, $x \in R$.

(a) Find a fully simplified expression for $\frac{dy}{dx}$

(b) Hence, an equation for the normal to the curve at the point where x = 1

(2)
$$y = \frac{x^3 + 1}{\cos x}$$
, $0 \le x < \frac{\pi}{2}$
Find $\frac{dy}{dx}$

(1)
$$y = \frac{x}{\sqrt{x-1}}, x > 1$$

(a) Show that $\frac{dy}{dx} = \frac{x-2}{2(x-1)^{\frac{3}{2}}}$

(b) Find the equation of the tangent to the curve at the point where x = 3 giving your answer in the form ax + by = c where a and c are integers and b is in exact form.

(2) Find the exact coordinates of any stationary point on the curve with equation $y = \frac{x^2}{e^{3x}}$, $x \in R$

(3) $f(\theta) = \frac{\theta}{\sin \theta}, \quad \frac{\pi}{4} \le \theta \le \frac{\pi}{2}$

(a) Find $f'(\theta)$

(b) Hence, show the stationary point on the curve satisfies the equation $\theta = \tan \theta$

(c) Find $f'\left(\frac{\pi}{2}\right)$

(d) Hence, show that the equation of the tangent to the curve when $\theta = \frac{\pi}{2}$ is $y = \theta$

(3)
$$g(x) = \frac{2}{x} + \frac{3}{x^2 + x}, x > 0$$

(a) Show that $g(x) = \frac{2x+5}{x^2+x}$

(b) Prove that there are no stationary points on the curve of y = g(x)

A Level Maths Year 2 Pure - Steve Blades 2023-2024 © - Full worked solutions are available at www.m4ths.com