WWW.M4THS.COM

(49) Differentiation using the Product Rule

WORKING AT D/E

(1) Circle all of the equations below where Cyril can use the product rule to find $\frac{dy}{dx}$. (a) $y = x \cos x$ (b) $y = 3xe^{4x-2}$ (c) $y = x^2$ (d) $y = \sin(x)\sqrt{1-x^4}$ (e) $y = \ln(2x+7) + 3x$

(2) Using the formula book, or otherwise, find $\frac{dy}{dx}$ for each of the following using the product rule:

(a)
$$y = xe^{x}$$
 (b) $y = x^{2} \cos x$ (c) $y = \sqrt{x} \sin x$

(3) A curve has equation
$$y = 3x \cos 2x$$
, $x \in R$
(a) Show that $\frac{dy}{dx} = 3 \cos 2x - 6x \sin 2x$

(b) Hence, show that the gradient of the tangent to the curve at the point where x = 0 is 3.

WORKING AT B/C

(1) A curve has equation $y = x(x-1)^{\frac{1}{2}}$, x > 1

(a) Show that
$$\frac{dy}{dx} = \frac{3x-2}{2(x-1)^{\frac{1}{2}}}$$

(b) By considering the domain, explain why there are no stationary point on the curve.

(2) $y = 2 + e^x \sin x$, $\frac{-\pi}{2} \le x \le \frac{\pi}{2}$

(a) Find the equation of the tangent to the curve at the origin.

(b) Show that the stationary point on the curve satisfies the equation $\tan x = -1$

(c) Hence, find the exact coordinates of the stationary point.

(1) A curve has equation $y = (x)(\sqrt[3]{x^2 + 1}), x \in \mathbb{R}$.

(a) Find the gradient of the curve at the point where $x = \sqrt{7}$ giving your answer in exact form.

(b) Explain why there is only one real root to the equation.

2)
$$g(x) = 3e^{2x} \cos 2x$$
, $0 < x < \frac{\pi}{2}$

Find the set of values of x such that g(x) is an increasing function.

(3) A curve has equation $y = e^{-x} \ln x$, x > 0

(a) Show that $\frac{dy}{dx} = e^{-x} \left(\frac{1}{x} - \ln x\right)$

(b) By drawing two different graphs, write down the number of stationary points on the curve with equation $y = e^{-x} \ln x$

(c) Find the equation of the normal to the curve at the point where x = 1 giving your answer in the form ax + by = c.

A Level Maths Year 2 Pure - Steve Blades 2023-2024 © - Full worked solutions are available at www.m4ths.com

3)
$$f(x) = x \ln x$$
, $x > 0$
a) Find an expression for $f'(x)$
b) Hence, show that $f'(e^4) = 5$