WWW.M4THS.COM

(48) Differentiation using the Chain Rule

WORKING AT D/E (1) Use the chain rule to find an expression for $\frac{dy}{dx}$ for each of the following. (a) $y = (x^3 + 4)^6$ (b) $y = \cos^5 x$ (c) $y = 4 \sin 2x$ (d) $y = \cos 8x$ (e) $y = e^{x^2}$ (f) $y = \ln(x^2 + 3x)$

(2) y = e^{3x}, x∈R
(a) Find an expression for dy/dx
(b) Find the value of y when x = 1 giving your answer in exact form.
(c) Hence, show that the equation of the tangent to the curve at the point where x = 1 is y = 3e³x - 2e³

(3) y = sin 3x + cos 3x 0 ≤ x ≤ π/2
(a) Find an expression for dy/dx
(b) Hence, show that any stationary points satisfy the equation tan 3x = 1
(c) Show that the stationary points have x coordinates x = π/12 and x = 5π/12

WORKING AT B/C

(1) (a) $f(x) = \ln(2x^2 + 1), x > -1$

Show that the only stationary point on the curve is (0,0)

(b)
$$g(x) = \sqrt{3x^3 - x}$$
, $-\frac{1}{\sqrt{3}} \le x \le 0$

(i) Show that $g'(x) = \frac{9x^2 - 1}{2\sqrt{3x^3 - x}}$

(ii) Hence, find the only stationary point on the curve. Give your answer in exact form.

(2) A curve has equation x = y² - y
(a) Find an expression for dx/dy
(b) Hence, find the value of dy/dx when y = 3

(3) A curve has equation $y = e^{x^2}$, $x \in R$.

(a) Show that the only stationary point on the curve has coordinates (0,1)

(b) Show that the equation of the tangent to the curve at the point with *x* coordinate 1 is y = 2ex - e

WORKING AT A*/A

(1) (a) Given that $g(x) = \ln \cos^2 x$, $0 \le x < \frac{\pi}{2}$ show that $g'(x) = k \tan x$, where k is a constant to be found.

(b) Hence, find the coordinates of the stationary point on the curve of y = g(x).

(2) $y = e^{\sin 3x}, \ 0 \le x \le \frac{\pi}{2}$

Find the exact coordinates of any stationary points on the curve.

(3) A curve has equation $y = \ln(x^2 + 6x)$, x > -6(a) Show that the equation of the tangent to the curve at the point where x = 1 can be written as $y = \frac{8}{7}x + \ln 7 - \frac{8}{7}$

(b) Show that $f(x) = \ln(x^2 + 6x)$, x > -6 is an increasing function for all values of x.

(c) Find the only root of the equation f(x) = 0 giving your answer in exact form.

A Level Maths Year 2 Pure - Steve Blades 2023-2024 © - Full worked solutions are available at www.m4ths.com