

WORKING AT B/C

(1) Find $\frac{dy}{dx}$ for each of the following:

(a)
$$y = \frac{2}{e^x}$$
 (b) $y = \ln x^2$ (c) $y = e^{6x} - 2\ln x$
(d) $y = \frac{7 - e^{8x}}{e^x}$ (e) $y = \ln \frac{1}{2}$ (f) $y = 4e^{\frac{x}{8}}$

(2) Show that the normal to the curve with equation $y = \ln 4x$ at the point with x coordinate 2 is $y = -2x + 3 \ln 2 + 4$

WORKING AT A*/A

(1) The tangent to the curve with equation y = 2^x at the point (0, p) crosses the x axis at Q.
(a) Write down the value of p.
(b) Find the coordinates of the point Q in exact form.

(2) The population of rats can be modelled by the equation $P = 300 \times 0.4^t$ where P is the number of rats after t days.

(a) Find the value of $\frac{dP}{dt}$ when t = 8.

(b) Interpret your answer in the context of the question

(c) State any limitations to the model.

(d) Cyril suggests a suitable domain for the function is $0 \le t \le 6$. Comment on his suggestion.

(2) Show that the equation of the tangent to the curve $y = e^{2x}$ at the point where the x = 0 is y = 2x + 1

(3) Find the coordinates of the stationary point on the curve with equation $y = e^{2x} - 8x$. Give your answer in exact form.

(3) (a) Find the coordinates of the stationary point on the curve with equation $y = \ln\left(\frac{1}{x^4}\right) + x^2$, x > 0giving your answer in exact form.

(b) The normal to the curve at the point with x coordinate 1 crosses the x axis at A and the y axis at B.

Show that $AB = \frac{\sqrt{2}}{2}$

(3) A curve has equation $y = x - 2 \ln x$. Show that the coordinates of the stationary point on the curve are $(2, 2 - \ln 4)$

A Level Maths Year 2 Pure - Steve Blades 2023-2024 © - Full worked solutions are available at www.m4ths.com