WWW.N4THS.COM A LEVEL MATHS

(46) Differentiating sin x and cos x Functions

WORKING AT D/E

(1) Using the formula book, find $\frac{dy}{dx}$ for each of the following:

(a) $y = \cos 2x$ (b) $y = \sin 4x$ (c) $y = 5\cos 3x$ (d) $y = -6\sin 8x$ (e) $y = \sin(-3x) + 2\sin(4x)$

(2) $f(x) = 2\sin(x) - x$, $0 < x < \frac{\pi}{2}$ (a) Find an expression for f'(x)

The curve with equation y = f(x) has a stationary point *P*.

(b) Show that the x coordinate of P is $\frac{\pi}{2}$

```
(c) Hence, show that the coordinates of P are \left(\frac{\pi}{3}, \sqrt{3} - \frac{\pi}{3}\right)
```

WORKING AT B/C

(1) $f(x) = \sin x + \cos x$, $0 \le x \le \pi$

(a) Show that the x coordinate of the stationary point on the curve of y = f(x) satisfies the equation $\tan x = 1$.

(b) Hence, find the exact coordinates of the stationary point on the curve with equation y = f(x).

(2) A curve has equation $y = \sin 2x - \cos 4x$.

(a) Find the equation of the tangent to the curve at the point $\left(\frac{\pi}{2}, -1\right)$

(b) Show that the tangent to the curve at the point $\left(\frac{\pi}{4}, 2\right)$ is a horizontal line.

WORKING AT A*/A

(1) Find the equation of the normal to the curve $y = 4 \sin x \cos x$ at the point with x coordinate $\frac{\pi}{3}$ giving your answer in the form ax + by = c

(2) A curve has equation

 $y = e^{2x} + 4\cos 6x$, $0 < x \le \frac{\pi}{4}$. Show that the *x* coordinate of the stationary point on the curve satisfies the equation $x = \ln \sqrt{k \sin 2x}$ where *k* is an integer to be found.

(3) Prove, from first principles, that the derivative of $\sin x$ is $\cos x$

(3) g(x) = cos 2x, 0 ≤ x ≤ π
(a) Doris wants to find g'(30°). Can Doris do this?
(b) Find an expression for g'(x)
(c) Show that the gradient of the g(x) at the point Q where x = π/4 is -2.
(d) Hence, show that the equation of the tangent at Q is y = -2x + π/2

(3) Show that there are no stationary points on the curve with equation $y = \sin 2x - 3x$, $0 \le x \le 2\pi$

A Level Maths Year 2 Pure - Steve Blades 2023-2024 © - Full worked solutions are available at www.m4ths.com