

You must show full workings.

WORKING AT B/C

(1) (a) Find the full expansion of $(a + b)^5$

(b) Hence, write down the expansion of $(a - b)^5$

WORKING AT A*/A

(1) Show that

$$\left(a+\frac{1}{a}\right)^4 + \left(a-\frac{1}{a}\right)^4 \equiv \frac{2}{a^4}(a^8+6a^4+1)$$

(2) Find the full expansion of $\left(2 + \frac{x}{2}\right)^4$ in ascending powers of *x*. Write each coefficient in their simplest form.

(2) (a) What is the maximum possible number of terms in the expansion of $(a + b)^n$ where *n* is a positive integer? Give your answer in terms of *n*.

(b) Write an expression for the seventh term in the expansion $(a + b)^n$ in terms of *a*, *b* and *n*.

(3) Show that the term in x^7 in the expansion of $\left(5 - \frac{x}{3}\right)^{11}$ is $-\frac{68750}{729}x^7$

(3) Alan claims that when *n* is an even positive integer in the expansion of $(x + x^{-1})^n$ there will always be a term independent of *x*. Is he correct? You must justify your answer.

(3) Find the full expansion of $(1 - x)^5$ simplifying each term.

A Level Maths Year 1 Pure - Steve Blades 2023-2024 © - Full worked solutions are available at www.m4ths.com