WW.M4THS.COM A LEVEL MATHS

(38) $a \cos x \pm b \sin x$ as $R\cos(x \pm a) R\sin(x \pm a)$

(1) (a) Use the formula book to find the expansion of $sin(x + \alpha)$

(b) Hence, write down the expansion of $R \sin(x + \alpha)$

WORKING AT D/E

(c) Using your answers to part (a) and (b), show that $3 \cos x + 4 \sin x \ and \ b \ b \ constant \ co$

(2) (a) Using the expansion for $\cos(A + B)$ in the formula book, show that

 $12\cos x + 5\sin x = 13\cos(x - 22.6^{\circ})$

(b) Hence, show that the solutions to the equation $12 \cos x + 5 \sin x = 6.5$ are $x = 82.6^{\circ}$ and $x = 322.6^{\circ}$ for $0 < x < 360^{\circ}$

(3) Write $8 \cos x - 6 \sin x$ in the form $R \cos(x + \alpha)$ where R > 0 and $0 < \alpha < 90^{\circ}$

WORKING AT B/C

(1) (a) Express $8 \cos x + 6 \sin x$ in the form $R \sin(x + \alpha)$ where R > 0 and $0 < \alpha < 90^{\circ}$

(b) Hence, solve the equations below:

(i) $8\cos x + 6\sin x = 10$, $0 \le x \le 360^{\circ}$

(ii) $8\cos 2y + 6\sin 2y = 5$, $0 \le y \le 360^{\circ}$

(2) (a) $2 \cos x + 4 \sin x$ in the form $R \cos(x - \alpha)$ where R > 0 and $0 < \alpha < 90^{\circ}$. Give your answer for *R* in exact form and α to 1 decimal place.

(b) $f(x) = 2\cos x + 4\sin x$, $x \in R$. Using your answer to part (a), find the maximum value of f(x).

(c) Write down the coordinates of the first maximum point of f(x), x > 0.

(d) Explain why there are no solutions to the equation $2 \cos x + 4 \sin x = 4.5$ for any value of x

(3) (a) Express $3 \cos x + 2 \sin x$ in the form $R \cos(x - \alpha)$ where R > 0 and $0 < \alpha < 90^{\circ}$

(b) Hence sketch the graph of $y = 8 \cos x + 6 \sin x$, $0 \le x \le 360^{\circ}$ including the coordinates of any stationary points and points where the curve meets or crosses the coordinate axes.

WORKING AT A*/A

 $(1) g(x) = 10 - \cos 5x + \sin 5x$

(a) Show that g(x) can be written in the form $g(x) = p \sin(5x - q) + r$, $p > 0, 0 < q < \frac{\pi}{2}$ where p, q and r are constants.

(b) Find the maximum value of g(x) in exact form.

(c) Given that $0 \le x \le \pi$, find the values of x that that maximise g(x), giving exact values.

(d) Sketch the graph of y = g(x), $0 \le x \le \pi$. On the graph show the coordinates of any maximum or minimum points and the coordinates of any points where the graph meets or crosses the coordinate axes. Any non-exact values are to be given to 3SF.

(2) (a) Express $7 \cos x - \sin x$ in the form $R \cos(x + \alpha)$ where R > 0 and $0 < \alpha < 90^{\circ}$. $f(x) = \frac{5}{7 \cos x - \sin x}$

(b) Find the least value of |f(x)| as a simplified surd

(c) Express f(x) in the form P sec(x + α)
(d) Hence, sketch the graph of y = f(x) 0 ≤ x ≤ 360^o including any asymptotes.

(3) (a) Solve the equation $2 \cos x - \sin x = \frac{\sqrt{5}}{2}$, $0 < x < 2\pi$, giving your answers to 3SF in radians. (b) Hence, solve $\sin 4y - 2 \cos 4y = \frac{\sqrt{5}}{2}$, $-\pi < y < \pi$, giving your answers in exact form.

A Level Maths Year 2 Pure - Steve Blades 2023-2024 © - Full worked solutions are available at www.m4ths.com