WWW.N4THS.COM A LEVEL MATHS

(36) Polynomial Division

WORKING AT D/E

```
(1) Show, using long division that there is no remainder when x^3 + 4x^2 - 15x = 18 is divided by (x + 1)
```

(2) (a) Show, using long division that there is no remainder when $x^3 + 13x^2 + 52x + 60$ is divided by (x + 2)

(b) Hence, show that $x^3 + 13x^2 + 52x + 60$ can be factorised to give (x + 2)(x + a)(x + b) where a and b are integers.

WORKING AT B/C

(1) (a) Show, using polynomial division that when $x^3 - 7x - 6$ is divided by (x + 1) there is no remainder.

(b) Hence write $x^3 - 7x - 6$ in the form (x + 1)(x + a)(x + b)

WORKING AT A*/A

(1) When $x^3 + 1$ is divided by (x + 1) there is no remainder. Use polynomial division to express $x^3 + 1$ as a product of three linear factors.

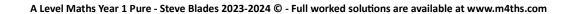
(2) (a) Show, using polynomial division that when $2x^3 + 13x^2 - 8x - 7$ is divided by (2x + 1) there is no remainder.

$$g(x) = 2x^3 + 13x^2 - 8x - 7$$

(b) Using your answer to part (a) show that the solutions to g(x) = 0 are $x = -\frac{1}{2}$, x = 1 and x = -7.

(2) (a) The volume of a cuboid can be written as $V = x^3 + 2x^2 - 11x - 12$. One side length has an express of x + 4. Find an expression for the lengths of the remaining two sides in the form (x + a) and (x + b) where a and b are integers.

(b) State, with a reason why x > 3


(3) (a) Show, using polynomial division that $x^3 - 4x^2 - 2x - 15$ has no remainder when divided by (x - 5)

(b) Using your answer to part (a) show that x = 5 is the only real solution to the equation

$$x^3 - 4x^2 - 2x - 15 = 0$$

(3) Show, using polynomial division that $x^2 + 1$ is a factor of $x^4 - 1$ and find the remaining factors of $x^4 - 1$.

(3) Using polynomial division, find the remainder when $x^3 + 3x^2 - 16x + 7$ is divided by (x - 3)

