WORKING AT B/C M 4 T H S . C O M (1) Write $\frac{\sqrt{2}}{2}\sin x + \frac{\sqrt{2}}{2}\cos x$ in the form: MATHS (34) Addition Formulae (a) sin(A + B)(b) $\cos(A - B)$ $sin(A \pm B) \& cos(A \pm B)$ WORKING AT D/E (1) Using the formula book, prove each of the following identities: (a) $\sin(90^{\circ} - x) \equiv \cos x$ (b) $\cos(90^{\circ} - x) \equiv \sin x$ (2) (a) Write down the expansion of sin(A + B)(c) $\sin(30^{\circ} + x) \equiv \frac{1}{2}\cos x + \frac{\sqrt{3}}{2}$ (b) Write down the expansion of cos(A + B)(c) Using your answers to part (a) and (b), show that that $\tan(A + B) \equiv \frac{\tan A + \tan B}{1 - \tan A \tan B}$ (2) Cyril is trying to find the expansion for $\tan(45^o + x)$ He writes: $\tan(45^{\circ} + x) = \tan 45^{\circ} + \tan x$ $= 1 + \tan x$ (a) Explain what he has done wrong. (b) Use the formula book to find the correct expansion for $tan(45^{\circ} + x)$ (3) Given that $\cos(A - B) \equiv -\sin B$, where A is a reflex angle, find the value of A in radians. (3) Show that $\cos(\pi + x)$ can be written as $-\cos x$ by using the addition formulae in the formula book.

WORKING AT A*/A

(1) Given that $p \sin\left(\frac{\pi}{2} + x\right) = q \cos\left(\frac{\pi}{2} + x\right)$, write an expression for $\cot x$ in terms of the constants p and q.

(2) Given that $4\sin(x - y) = \cos(x + y)$, show that $\tan x = \frac{4\tan y + 1}{4 + \tan y}$

(3) Write $-\sin A$ in the form $\cos (A + B)$ where $0 < B \le \pi$.

A Level Maths Year 2 Pure - Steve Blades 2023-2024 © - Full worked solutions are available at www.m4ths.com