(33) Inverse Trig Functions $\arcsin x$, $\arccos x$ and arctan x

WORKING AT D/E

(1) Find the value of each in radians in terms of π :

(a)
$$\arcsin\left(\frac{\sqrt{3}}{2}\right)$$

(b)
$$arcos(0.5)$$
 (c) $arctan(\sqrt{3})$

WORKING AT B/C

- (1) (a) Sketch the graph of $y = \arccos x$ stating the domain and range.
- (b) Sketch the graph of $y = \arcsin x$ stating the domain and range.
- (c) Sketch the graph of $y = \arctan x$ stating the domain, range and the equations of any asymptotes.

WORKING AT A*/A

- (1) Given that $\arccos k = x$, $0 < x < \frac{\pi}{2}$, find an expression for;
- (a) $\sin x$
- (b) $\tan x$
- (c) cos(arccos k)

- (2) Write down the value of each:
- (a) $\sin\left(\arcsin\left(\frac{1}{2}\right)\right)$ (b) $\cos\left(\arccos\left(\frac{\sqrt{2}}{2}\right)\right)$
- (2) Given that $\arcsin a = x$, $0 < x < \frac{\pi}{2}$, show that:
- (a) $\cos x = \sqrt{1 a^2}$
- (a) $\tan x = \frac{a}{\sqrt{1-a^2}}$

(2) Given that $\arctan\left(\frac{\pi}{2} - k\right) = y$, $0 < y < \frac{\pi}{2}$, find an expression for $\sin y$.

- (3) Find, without a calculator, the value of each:
- (a) cos(arcsin(1))
- (b) $\tan \left(\arccos \left(\frac{1}{\sqrt{2}} \right) \right)$