

(e)
$$\frac{3}{\tan^2 \theta}$$
 (f) $\frac{\cos 4\theta}{\sin 4\theta}$

(2) (a) Simplify $\cos x \operatorname{cosesec} x$

(b) Hence, find the 2 solutions for $\cos x \operatorname{cosesec} x = 1, \quad 0 < x < 360$

WORKING AT B/C

(1) (a) Show that $\csc 2\theta \tan 2\theta \equiv \sec 2\theta$

(b) Hence, solve the equation

 $\csc 2\theta \tan 2\theta = \sqrt{2}, \quad 0 < \theta < 2\pi.$

giving your answers as multiples of π

WORKING AT A*/A

(1) Show that there are no solutions to the equation $20 \operatorname{cosec}^2 \theta + 7 \operatorname{cosec} \theta = 6, \quad 0 \le \theta \le 2\pi$

(2) Given that $\cot p = \frac{4}{3}$ where p is a reflex angle measure in radians, find the value of:

(2) Show that

 $\frac{(\cos x + \sin x)^2}{\cos x} \equiv \sec x + 2\sin x$

(c) $\sin p$ (d) $\sin\left(\frac{\pi}{2} - p\right)$

(a) $\cos^2 p$

(b) $\operatorname{cosec}^2 p$

(3) (a) Show that, if $\cot^2 \theta - 2\cot \theta - 8 = 0$, then $\tan \theta = 0.25$ or $\tan \theta = -0.5$.

(b) Hence, solve the equation

$$\cot^2\theta - 2\cot\theta - 8 = 0 , \quad 0 < \theta < 360$$

Give your answers to 3SF.

(3) Show that there are 4 solutions to the equation $\sec^2 x = 4$, 0 < x < 360

(3) (a) Show that

$$(\cot x + \tan x)^2 \equiv \csc^2 x \sec^2 x$$

(b) Hence, or otherwise, show that there are nosolutions to the equation $(\cot x + \tan x)^2 = 0$, $0 \le x \le 360$

A Level Maths Year 2 Pure - Steve Blades 2023-2024 © - Full worked solutions are available at www.m4ths.com