WWW.M4THS.COM A LEVEL MATHS

(24) Using Radians as a Measurement of Angles

WORKING AT D/E

(1) Without a calculator, convert each of the following to radians, giving your answers as multiples of π : (a) 30⁰ (b) 60⁰ (c) 45⁰ (d) 90⁰

(h) 180⁰

(2) Without a calculator, convert each of the following to degrees:

(a)
$$\frac{\pi}{3}$$
 (b) $\frac{\pi}{4}$ (c) π (d) $\frac{\pi}{2}$ (e) 4π

(f) 0^0

(3) (a) Use a calculator to convert each of the following to degrees. Give answers to 1dp. (i) 1.2^{c} (ii) 0.87^{c} (iii) 5.36^{c}

(b) Use a calculator to convert each of the following to radians giving answers to 3SF.
(i) 37^o
(ii) 254^o
(iii) 112^o

WORKING AT B/C

(1) Without a calculator, convert each of the following to radians, giving your answers as multiples of π :

(a) 240 ⁰	(b) 300 ⁰	(c) 135 ⁰	(d) 15 ⁰
(e) -30^{0}	$(f) - 45^0$	(g) 210 ⁰	(h) -90°

(2) Without a calculator, convert each of the following to degrees:

$(a)\frac{-2\pi}{3}$	$(b) - \frac{5\pi}{4}$	(c) 3π
(d) $-\frac{\pi}{6}$	(e) -2π	(f) 8π

(3) $\triangle ABC$ is shown below. $AB = \sqrt{3}$, AC = 2 and $< BAC = \frac{\pi}{6}$

Without using a calculator, **show that** the area of $\triangle ABC$ is $\frac{\sqrt{3}}{2}$ units.

C

R

WORKING AT A*/A

(1) (a) Sketch the graph of $y = \sin\left(x - \frac{\pi}{2}\right)$,

 $0 \le x \le 2\pi$ show where the curve meets or crosses the coordinate axes. Write down the coordinates of any maximum or minimum points.

(b) The graph of $y = pcos(\theta - q), 0 \le \theta \le 2\pi$ where *p* is a positive constant and $0 < q < \frac{\pi}{2}$

crosses the θ axis at $\left(\frac{5\pi}{6}, 0\right)$ and $\left(\frac{11}{6}, 0\right)$. The graph has a maximum point at (r, 8). Find the values of p, q and r giving q and r in terms of π

(2) ΔPQR is shown below. $PR = \sqrt{3}$, QR = 2 and $< PRQ = \frac{\pi}{\epsilon}$

Without using a calculator, find the length of *PR* in its simplest form.

 $\left(\cos\left(\frac{\pi}{6}\right) + \sin\left(\frac{\pi}{3}\right)\right)^4$ is an integer.

A Level Maths Year 2 Pure - Steve Blades 2023-2024 © - Full worked solutions are available at www.m4ths.com