3D Trigonometry and Pythagoras Theorem

 www.m4ths.com - Steve Blades ©(1) Find the missing values in the triangles. Give any noninteger answers to 3 SF.

(2) Find the missing values in the triangles. Give any nonInteger answers to 3SF.

(3) A cuboid is shown below.

(a) Draw the 2D triangle $A B C$ and show that $A C=5 \mathrm{~cm}$.
(b) Draw the 2D triangle $D A C$ and show that $A D=\sqrt{29}$
(c) Using your answers to part (a) and (b), find the size of $<D A C$ to 3 significant figures.
(d) On the diagram, draw all lines that have length $\sqrt{29}$.
(4) The diagram below shows a cuboid.

(a) Use Pythagoras Theorem in 3D to show that the length on the diagonal $A D=2 \sqrt{14} \mathrm{~cm}$ long.
(b) On the diagram mark the vertex E such that the length $B E=2 \sqrt{14}$.
(c) Show that $A C=2 \sqrt{13} \mathrm{~cm}$ long
(d) Draw the right-angled triangle $A C D$ showing the lengths of $A C$ and $D C$ on your diagram.
(e) Hence, using trigonometry in 3D, show that the angle $D A C=15.5^{\circ}$ correct to 3 significant figures.
(5) The diagram below shows a cuboid $O A B C D E F G$.

(a) Show that $O B=5 \mathrm{~cm}$.
(b) Hence or otherwise, show that $O F=\sqrt{41}$.
(c) Explain why $A G$ also has length $\sqrt{41}$.
(d) Find the size of $<F O B$ using the answers you have found previously.
(e) Find another angle that has the same size as $<F O B$.

The triangle $O B G$ is drawn within the cuboid $O A B C D E F G$ as shown below.

(f) Show that $\triangle O B G$ is an isosceles triangle.
(g) Find the size of $\angle O B G$.
(h) Find the area of $\triangle O B G$.
(6) The diagram below shows a cuboid $O P Q R S T U V$.

Given that $U Q=6 \mathrm{~cm}$ and $\angle U O Q=30^{\circ}$ find:
(a) $O U$
(b) $O Q$
(c) $V P$
(d) $O S$

Given further that $O P=5 \mathrm{~cm}$:
(e) Find the volume of the cuboid.
(f) Find the area of $\triangle V P R$.
X is the midpoint of the line $S V$.
(g) Find the area of the triangle $P Q X$.

Point Y lies on $V R$ such that $R Y: Y V$ Is 2:1.
(h) Find the size of $<Y P R$.
(7) The diagram below shows a 'right wedge'
$B C=8 \mathrm{~cm}, \angle F C B=90^{\circ}, \angle E O D=90^{\circ} \& \angle F B C=24^{\circ}$

(a) Find the length $B F$.
(b) Hence write down the length $O E$.
(c) Find $O C$.
(d) Find $<F O C$.
(8) The diagram shows a square based pyramid $O A B D$ where point D is directly above the centre of the base.

(a) Show that the perpendicular height of the pyramid is $3 \sqrt{7} \mathrm{~cm}$ long.
(b) Hence, find the volume of the pyramid.
(c) Find the size of $<D O B$.
(d) Find the total surface area of the solid pyramid.
(9) A cube has side length a.

Find a simplified expression in terms of a for the length of the longest diagonal in the cube
(10)* The diagram below shows a cuboid.

Given that $A X: X B=1: 2$ and $A Y: Y C=1: 1$ find the area of the shaded triangle.
(11) The diagram below shows a 'right wedge' or, if you like a 'trapezoidal prism'.

$$
\begin{gathered}
<B A C=<A E F=\angle B A D=\angle A B C=\angle B C D=90^{\circ} \\
A B=12, B F=7 \text { and } A F=6
\end{gathered}
$$

Find the volume of the prism to 3 SF.
(12) The diagram below shows a sphere centre O, and diameter $A B$. Point C touches the outer of the sphere and $\triangle A B C$ is a right-angled triangle.

Given that $A B=2 x$ and that $\tan \angle B C A=\frac{1}{\sqrt{3}}$, without a calculator, show that the volume of the sphere is $\frac{32 x^{3} \pi}{3}$

