Further Maths (Topics 1-4) Test 2 - www.m4ths.com - Steve Blades ©

(1) The complex number z satifies |z - 1 - i| = |z - 5 + 3i|. Find the least value of |z| for points on this locus on the Argand diagram.

(2) The complex numbers $z_1 = 1 + i\sqrt{3}$ and $z_2 = a + bi$ are such that $\arg(z_1 z_2) = \frac{\pi}{6}$ and $\left|\frac{z_1}{z_2}\right| = 1$.

(a) Find z_2 .

(b) Plot z_2 on an Argand diagram.

(3) The cubic equation $2x^3 - 4x^2 + 5x + 6 = 0$ has roots α, β and γ . Show that $\alpha^3 + \beta^3 + \gamma^3 = -16$

(4) Given that

$$\sum_{r=1}^{k} 4r = 840$$

Find the value of

$$\sum_{r=10}^{k} 4(r+1)(r-1)$$

(5) z is a complex number. Given that $\frac{1}{z} = \frac{-(2+i)}{10}$, find $\arg(z)$ to 3SF.

(6) A quartic equation has roots α , β , γ and δ . Given that $\sum \alpha = 10$, $\sum \alpha \beta = -40$, $\sum \alpha \beta \gamma = 70$ and $\alpha \beta \gamma \delta = 39$ find an equation with integrer coefficients that has the roots 2α , 2β , 2γ and 2δ .

(7) The complex number z is represented by the point P on the Argand diagram. Given that |z - 4| = 2 show that the maximum value of $\arg(z - 1)$ in the interval $(-\pi, \pi)$ is $\arcsin\left(\frac{a}{b}\right)$ where a and b are integers in their simplest form.

(8) The equation $x^3 - x^2(p+8) + x(8p+41) - 41p = 0$ has roots a, β and γ . Given that $\sum \alpha \beta = 57$ find: (a) The value of $\alpha \beta \gamma$ (b) The value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$