www.m4ths.com - Year 2
A Level-Radian Measures
(1) Convert the following exact values into degrees:
(a) $\frac{\pi}{3}$
(b) $\frac{\pi}{4}$
(c) $\frac{3 \pi}{5}$
(d) $\frac{7 \pi}{12}$
(2) Convert the following into degrees giving your answers to 3 significant figures:
(a) 2.13^{c}
(b) 4.65^{c}
(c) 5.1^{c}
(3) Convert the following values into radians giving your answers in exact form:
(a) 180°
(b) 135°
(c) 270°
(d) 60°
(4) Convert the following into radians giving your answers to 3 significant figures:
(a) 134°
(b) 97°
(c) 12°
(For Q5 onwards all diagrams of sectors show the centre of the sector and 2 radii.)
(5) Find the arc length for each sector below giving your answer to 3 significant figures:
(a)

(b)

(c)

(6) Find the value of θ in the diagram below, given that the radius of the sector is 9.4 km and the arc length is 20.15 km

(7) (a) Find the area of the sector below:

(b) Find the area of the major sector below:

(8) (a) Find the area of the shaded segment below;

(b) A circle with centre O and radius $8 m$ has the points $A, B \& C$ on its circumference.
Given that $\angle A O B=1.1^{c}$ and $\angle B O C=2.05^{\circ}$, find the
combined area of the two shaded segments shown below.

(9) A circle has centre O and radius $7.2 \mathrm{~cm} . A, B$ and C lie on the circumference of the circle. Given that $\angle C A B=1.4^{c}$, find:
(a) The length of the minor $\operatorname{arc} B C$.
(b) The area of shaded sector.

(10) The diagram below shows a sector with centre O and radius $8 m$. A line is drawn vertically from B to the line $A O$ such that the two lines are perpendicular. Find:
(a) The area of the shaded region.
(b) |The perimeter of the shaded region.

(11) Below is a picture of a circle with centre O and diameter $A C=12 \mathrm{~cm}$.
The line $E F$ is a tangent and the line $D B$ is parallel to $E F$.

Given that $\angle A O B=2.01^{c}$ find:
(a) The arc length $B C$.
(b) The area of the $\triangle O D B$.

