www.m4ths.com - Year 2 -
Geometric Sequences/Series
(1) State which of the following are geometric sequences giving a reason for your answer.
(a) $2,5,8,11 \ldots$
(b) $1,3,9,27 \ldots$
(c) $0.5,0.25,0.125,0.625 \ldots$
(d) $-2,4,-8,16 \ldots$
(e) $25 a b, 5 a^{2} b^{2}, a^{3} b^{3}, 0.2 a^{4} b^{4} \ldots$
(2) Find the common ratio for each of the following geometric sequences and write down the next two terms.
(a) $2,6,18,54 \ldots$
(b) $80,40,20,10 \ldots$
(c) $-3,12,-48,192 \ldots$
(d) $\frac{1}{5}, \frac{4}{15}, \frac{16}{45}, \frac{64}{135}$
(e) $t, 2 t^{3}, 4 t^{5}, 8 t^{7} \ldots$
(3) Find the $7^{\text {th }}$ and $12^{\text {th }}$ terms in each of the sequences below:
(a) First term: $a=4$

Ratio: $r=2$
(b) First term: $a=0.5$

Ratio: $r=-3$
(4) Find the $9^{\text {th }}$ and $14^{\text {th }}$ terms in each of the sequences below:
(a) $5,15,45,135 \ldots$
(b) $8,-4,2,-1 \ldots$
(c) $35,7,1.4,0.28$
(5) Find the $1^{\text {st }}$ term of the geometric sequence with $2^{\text {nd }}$ term 9 and $5^{\text {th }}$ term $\frac{243}{8}$.
(6) A geometric sequence with a positive ratio has $3^{\text {rd }}$ term 18 $\& 7^{\text {th }}$ term 1458 . Find the value of the $10^{\text {th }}$ term.
(7) A geometric sequence has the first 3 terms $2,2 k, 9 k+5 \ldots$,
Given that $k>0$, find:
(a) The value of k.
(b) The $7^{\text {th }}$ term of the sequence
(8) A geometric sequence has the first 3 terms $2 p, \frac{1}{2}, p^{-4} \ldots$
(a) Find the value of p
(b) Write down the nth term for the sequence.
(c) Find the value of $a_{8}-a_{6}$.
(9) A ball is dropped from a height of 5 m above the floor. After bouncing once it reaches a height of 4 m above the floor. The height reached by the ball after each subsequent bounce forms a geometric sequence.
(a) Find maximum the height above the floor the ball reaches after the $3^{\text {rd }}$ bounce?
(b) Find the minimum number of times the ball will bounce before the maximum height reached above the floor is less than 1.18 m .
(10) Find the sum of the first 8 terms for each geometric series
(a) $\underline{1^{\text {st }} \text { term }} a=4 \quad$ ratio $r=0.1$
(b) $\underline{1^{\text {st }} \text { term }} a=0.4 \underline{\text { ratio }} r=-3$
(c) $\underline{1}^{\text {st }}$ term $a=-5 \underline{\text { ratio }} r=-0.3$
(11) Find the sum of the first 10 terms for each geometric series:
(a) $2+6+18,+54+\ldots$
(b) $5+10+20+40+\ldots$
(c) $8-2+0.5-0.125+\ldots$
(12) Show that the sum of the first n terms of a geometric series with first term a and common ratio r is:
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
(13) Evaluate the following:
(a) $\sum_{r=1}^{6} 3^{r}$
(b) $\sum_{r=1}^{8} 2 \times 0.5^{r}$
(c) $\sum_{r=1}^{9} 2^{r-1}$
(d) $\sum_{r=0}^{11}\left(2^{r}+1\right)$
(14) Find the least value of n such that the sum of the first n terms of the geometric series $2+\frac{5}{2}+\frac{25}{8}+\frac{125}{32}+\ldots$ exceeds 65 .
(15) Fred starts a new job. He is paid $£ 32000$ in his first year and each year he works for the company he is paid 9% more than the previous year.
(a) Find how much Fred is paid in the $5^{\text {th }}$ year.
(b) Find how much Fred earns in total by the end of the $12^{\text {th }}$ year working for the company.
(16) Find the sum to infinity of the following geometric series:
(a) $4+2+1+0.5+\ldots$.
(b) $-10+2-0.4+0.08+\ldots$
(c) $2 p+\frac{1}{2}+p^{-4} \ldots$
(17) Evaluate $\sum_{r=1}^{\infty} 3 \times(0.5)^{r}$
(18) A geometric series has first term 3.15 and the sum to infinity is 14.2 . Find the ratio of the series as an exact fraction.
(19) Peter is doing his Maths homework. It takes him 4 minutes to do the 1st question and each subsequent question takes him 8% less time than the question before.
(a) Find out how long it takes him to complete the $12^{\text {th }}$ question.
(b) Find out how long it takes
him to complete the first 20 questions.
Give your answers to the nearest second.
(20) Sue pays $£ 250$ into a savings account each year that pays a fixed rate of 3.7% interest.
Find the total amount in the account, to the nearest penny, at the end of the $14^{\text {th }}$ year.

