www.m4ths.com - A Level Maths 3 Exam Questions Yr 1 - Vectors
(1)Two forces are given as: $\mathrm{F}_{1}=(p \mathrm{i}+q \mathrm{j}) \mathrm{N}$ and $\mathrm{F}_{2}=(3 \mathrm{i}+6 \mathrm{j}) \mathrm{N}$.
(a) Find the angle that F_{2} makes with the vector i.
(b) Given that the resultant force $\mathrm{R}=\mathrm{F}_{1}+\mathrm{F}_{2}$ has magnitude 10 N and acts horizontally, find the values of p and q.
(c) The force $\mathrm{F}_{3}=(a \mathrm{i}+b \mathrm{j}) \mathrm{N}$ and F_{1} act on a particle. Given that the particle remains in equilibrium, state the values of a and b.
(2) Two parallel vectors and given as $\mathrm{a}=\binom{5}{7}$ and $\mathrm{b}=\binom{p}{-14}$.
(a) Find the value of p.
(b) Find $|a|$.
(c) Find a unit vector in the direction of a.
(d) Given that a particle has velocity $\binom{5}{7} m s^{-1}$, state the speed of the particle.
(3) Relative to a fixed origin O, A and B have position vectors $\overrightarrow{O A}=-4 \mathrm{i}+2 \mathrm{j}$ and $\overrightarrow{O B}=7 \mathrm{i}+6 \mathrm{j}$
(a) Find the vector $\overrightarrow{A B}$
(b) Find the distance between A and B.
(c) Find the bearing of B from A.

A boat starts at a port before travelling to a point with position vector $(-4 i+2 j) k m$ relative to the port. The boat then travels to a point with position vector $(7 i+$ $6 \mathrm{j}) \mathrm{km}$ relative to the port.
The boat finally returns to the port. Find the total distance the boat travels.
www.m4ths.com - A Level Maths
3 Exam Questions Yr 1 - Vectors
(1)Two forces are given as:
$\mathrm{F}_{1}=(p \mathrm{i}+q \mathrm{j}) \mathrm{N}$ and $\mathrm{F}_{2}=(3 \mathrm{i}+6 \mathrm{j}) \mathrm{N}$.
(a) Find the angle that F_{2} makes with the vector i.
(b) Given that the resultant force $\mathrm{R}=\mathrm{F}_{1}+\mathrm{F}_{2}$ has magnitude 10 N and acts horizontally, find the values of p and q.
(c) The force $\mathrm{F}_{3}=(a \mathrm{i}+b \mathrm{j}) \mathrm{N}$ and F_{1} act on a particle. Given that the particle remains in equilibrium, state the values of a and b.
(2) Two parallel vectors and given as $\mathrm{a}=\binom{5}{7}$ and $\mathrm{b}=\binom{p}{-14}$.
(a) Find the value of p.
(b) Find $|a|$.
(c) Find a unit vector in the direction of a.
(d) Given that a particle has velocity $\binom{5}{7} m s^{-1}$, state the speed of the particle.
(3) Relative to a fixed origin O, A and B have position vectors $\overrightarrow{O A}=-4 \mathrm{i}+2 \mathrm{j}$ and $\overrightarrow{O B}=7 \mathrm{i}+6 \mathrm{j}$
(a) Find the vector $\overrightarrow{A B}$
(b) Find the distance between A and B.
(c) Find the bearing of B from A. A boat starts at a port before travelling to a point with position vector $(-4 \mathrm{i}+2 \mathrm{j}) \mathrm{km}$ relative to the port. The boat then travels to a point with position vector $(7 \mathrm{i}+$ $6 \mathrm{j}) \mathrm{km}$ relative to the port.
The boat finally returns to the port. Find the total distance the boat travels.
www.m4ths.com - A Level Maths
3 Exam Questions Yr 1 - Vectors
(1)Two forces are given as:
$\mathrm{F}_{1}=(p \mathrm{i}+q \mathrm{j}) \mathrm{N}$ and $\mathrm{F}_{2}=(3 \mathrm{i}+6 \mathrm{j}) \mathrm{N}$.
(a) Find the angle that F_{2} makes with the vector i.
(b) Given that the resultant force $\mathrm{R}=\mathrm{F}_{1}+\mathrm{F}_{2}$ has magnitude 10 N and acts horizontally, find the values of p and q.
(c) The force $\mathrm{F}_{3}=(a \mathrm{i}+b \mathrm{j}) \mathrm{N}$ and F_{1} act on a particle. Given that the particle remains in equilibrium, state the values of a and b.
(2) Two parallel vectors and
given as $\mathrm{a}=\binom{5}{7}$ and $\mathrm{b}=\binom{p}{-14}$.
(a) Find the value of p.
(b) Find $|a|$.
(c) Find a unit vector in the direction of a.
(d) Given that a particle has velocity $\binom{5}{7} m s^{-1}$, state the speed of the particle.
(3) Relative to a fixed origin O, A and B have position vectors $\overrightarrow{O A}=-4 \mathrm{i}+2 \mathrm{j}$ and $\overrightarrow{O B}=7 \mathrm{i}+6 \mathrm{j}$
(a) Find the vector $\overrightarrow{A B}$
(b) Find the distance between A and B.
(c) Find the bearing of B from A.

A boat starts at a port before travelling to a point with position vector $(-4 \mathrm{i}+2 \mathrm{j}) \mathrm{km}$ relative to the port. The boat then travels to a point with position vector $(7 \mathrm{i}+$ $6 \mathrm{j}) \mathrm{km}$ relative to the port.
The boat finally returns to the port. Find the total distance the boat travels.

