## www.m4ths.com - A Level Maths <u>3 Exam Questions</u>

**Yr 1 – Trigonometric Graphs** (1) (a) Given that k is a positive constant, sketch the graph of:  $y = k \cos 2x$  for  $0 \le x \le 360$ labelling any points of where the curve meets the coordinate axes. (b) State fully the transformations that maps the graph of  $y = \cos x$  to the graph of  $y = k \cos 2x$ . (c) Given that there are no solutions to the equation:  $k \cos 2x = 8$ , find the set of values for which k is valid. (2) Sketch the graph of:  $y = 1 - \tan \theta$  for  $0 \le \theta \le 360$ showing any asymptotes and the coordinates where the curve meets the v axis. (3) The diagram below shows part of the graph of  $y = a \sin(x - b)$  where a and b are positive constants.



The curve has a local maximum at the point (3, 116). State the value of *a* and a possible value of *b* given that *x* is measured in degrees.

www.m4ths.com - A Level Maths **3 Exam Questions Yr 1 – Trigonometric Graphs** (1) (a) Given that k is a positive constant, sketch the graph of:  $y = k \cos 2x$  for  $0 \le x \le 360$ labelling any points of where the curve meets the coordinate axes. (b) State fully the transformations that maps the graph of  $y = \cos x$  to the graph of  $y = k \cos 2x$ . (c) Given that there are no solutions to the equation:  $k \cos 2x = 8$ , find the set of values for which k is valid. (2) Sketch the graph of:  $y = 1 - \tan \theta$  for  $0 \le \theta \le 360$ showing any asymptotes and the coordinates where the curve meets the y axis. (3) The diagram below shows part of the graph of  $y = a\sin(x - b)$  where a and b are positive constants.



The curve has a local maximum at the point (3, 116). State the value of a and a possible value of b given that x is measured in degrees.

## www.m4ths.com - A Level Maths <u>3 Exam Questions</u>

Yr 1 – Trigonometric Graphs (1) (a) Given that k is a positive constant, sketch the graph of:  $y = k \cos 2x$  for  $0 \le x \le 360$ labelling any points of where the curve meets the coordinate axes. (b) State fully the transformations that maps the graph of  $y = \cos x$  to the graph of  $y = k \cos 2x$ . (c) Given that there are no solutions to the equation:  $k \cos 2x = 8$ , find the set of values for which k is valid. (2) Sketch the graph of:  $y = 1 - \tan \theta$  for  $0 \le \theta \le 360$ showing any asymptotes and the coordinates where the curve meets the v axis. (3) The diagram below shows part of the graph of  $y = a\sin(x - b)$  where a and b are positive constants.



The curve has a local maximum at the point (3, 116). State the value of *a* and a possible value of *b* given that *x* is measured in degrees.