www.m4ths.com - A Level Maths
3 Exam Questions
Yr $1-e^{x}$ and $\ln x$
(1) Sketch the graph of

$$
y=4-e^{2 x}
$$

stating the equations of the any asymptotes and points of intersection with the coordinate axes. Give your answers in exact form where appropriate.
(2) The population of rats in a colony can be modelled by the formula $P=200+50 e^{k t}$ where $P$ is the number of rats in the colony after $t$ days.
(a) State the initial population.
(b) Given that there were 316 rats after 6 days, find the value of $k$ to 3 significant figures.
Find, to the nearest day, when the population of rats was increasing by 30 rats per day.
(3) Solve the equation

$$
e^{x}-6 e^{-x}-1=0
$$

giving your answer as a natural logarithm.

## www.m4ths.com - A Level Maths 3 Exam Questions $\underline{\operatorname{Yr} 1-e^{x} \text { and } \ln x}$

(1) Sketch the graph of

$$
y=4-e^{2 x}
$$

stating the equations of the any asymptotes and points of intersection with the coordinate axes. Give your answers in exact form where appropriate.
(2) The population of rats in a colony can be modelled by the formula $P=200+50 e^{k t}$ where $P$ is the number of rats in the colony after $t$ days.
(a) State the initial population.
(b) Given that there were 316 rats after 6 days, find the value of $k$ to 3 significant figures.
Find, to the nearest day, when the population of rats was increasing by 30 rats per day.
(3) Solve the equation

$$
e^{x}-6 e^{-x}-1=0
$$

giving your answer as a natural logarithm.
www.m4ths.com - A Level Maths
3 Exam Questions
Yr $1-e^{x}$ and $\ln x$
(1) Sketch the graph of

$$
y=4-e^{2 x}
$$

stating the equations of the any asymptotes and points of intersection with the coordinate axes. Give your answers in exact form where appropriate.
(2) The population of rats in a colony can be modelled by the formula $P=200+50 e^{k t}$ where $P$ is the number of rats in the colony after $t$ days.
(a) State the initial population.
(b) Given that there were 316 rats after 6 days, find the value of $k$ to 3 significant figures.
Find, to the nearest day, when the population of rats was increasing by 30 rats per day.
(3) Solve the equation

$$
e^{x}-6 e^{-x}-1=0
$$

giving your answer as a natural logarithm.
www.m4ths.com - A Level Maths 3 Exam Questions Yr $1-e^{x}$ and $\ln x$
(1) Sketch the graph of

$$
y=4-e^{2 x}
$$

stating the equations of the any asymptotes and points of intersection with the coordinate axes. Give your answers in exact form where appropriate.
(2) The population of rats in a colony can be modelled by the formula $P=200+50 e^{k t}$ where $P$ is the number of rats in the colony after $t$ days.
(a) State the initial population.
(b) Given that there were 316 rats after 6 days, find the value of $k$ to 3 significant figures.
Find, to the nearest day, when the population of rats was increasing by 30 rats per day.
(3) Solve the equation

$$
e^{x}-6 e^{-x}-1=0
$$

giving your answer as a natural logarithm.
www.m4ths.com - A Level Maths 3 Exam Questions Yr $1-e^{x}$ and $\ln x$
(1) Sketch the graph of

$$
y=4-e^{2 x}
$$

stating the equations of the any asymptotes and points of intersection with the coordinate axes. Give your answers in exact form where appropriate.
(2) The population of rats in a colony can be modelled by the formula $P=200+50 e^{k t}$ where $P$ is the number of rats in the colony after $t$ days.
(a) State the initial population.
(b) Given that there were 316 rats after 6 days, find the value of $k$ to 3 significant figures.
Find, to the nearest day, when the population of rats was increasing by 30 rats per day.
(3) Solve the equation

$$
e^{x}-6 e^{-x}-1=0
$$

giving your answer as a natural logarithm.

## www.m4ths.com - A Level Maths 3 Exam Questions Yr 1-e $e^{x}$ and $\ln x$

(1) Sketch the graph of

$$
y=4-e^{2 x}
$$

stating the equations of the any asymptotes and points of intersection with the coordinate axes. Give your answers in exact form where appropriate.
(2) The population of rats in a colony can be modelled by the formula $P=200+50 e^{k t}$ where $P$ is the number of rats in the colony after $t$ days.
(a) State the initial population.
(b) Given that there were 316 rats after 6 days, find the value of $k$ to 3 significant figures.
Find, to the nearest day, when the population of rats was increasing by 30 rats per day.
(3) Solve the equation

$$
e^{x}-6 e^{-x}-1=0
$$

giving your answer as a natural logarithm.

