(1) $\mathrm{f}(x)=\frac{2}{\sqrt{x}}-x, \quad x>0$

The normal to $\mathrm{f}(x)$ at the point (p, q) is parallel to the line with equation $2 x-18 y=3$. Find the exact values of p and q.
(2) John has 72 m of wire and needs to make a rectangular pig pen with 3 sides below. (The existing wall doesn't need to be wired).

Existing Wall

Use calculus to find the maximum possible area the pig pen can be and prove that it's a maximum value.
(3) Show that the curve with equation $y=1-0.5 x+2 x^{5}$ has no points of inflexion.

www.m4ths.com - A Level Maths 3 Exam Questions Yr 1 - Differentiation

(1) $\mathrm{f}(x)=\frac{2}{\sqrt{x}}-x, \quad x>0$

The normal to $\mathrm{f}(x)$ at the point (p, q) is parallel to the line with equation $2 x-18 y=3$. Find the exact values of p and q.
(2) John has 72 m of wire and needs to make a rectangular pig pen with 3 sides below. (The existing wall doesn't need to be wired).

Existing Wall

Use calculus to find the maximum possible area the pig pen can be and prove that it's a maximum value.
(3) Show that the curve with equation $y=1-0.5 x+2 x^{5}$ has no points of inflexion.
(1) $\mathrm{f}(x)=\frac{2}{\sqrt{x}}-x, \quad x>0$

The normal to $\mathrm{f}(x)$ at the point (p, q) is parallel to the line with equation $2 x-18 y=3$. Find the exact values of p and q.
(2) John has 72 m of wire and needs to make a rectangular pig pen with 3 sides below. (The existing wall doesn't need to be wired).

Existing Wall

Use calculus to find the maximum possible area the pig pen can be and prove that it's a maximum value.
(3) Show that the curve with equation $y=1-0.5 x+2 x^{5}$ has no points of inflexion.
www.m4ths.com - A Level Maths 3 Exam Questions Yr 1 - Differentiation
(1) $\mathrm{f}(x)=\frac{2}{\sqrt{x}}-x, \quad x>0$

The normal to $\mathrm{f}(x)$ at the point (p, q) is parallel to the line with equation $2 x-18 y=3$. Find the exact values of p and q.
(2) John has 72 m of wire and needs to make a rectangular pig pen with 3 sides below. (The existing wall doesn't need to be wired).

Use calculus to find the maximum possible area the pig pen can be and prove that it's a maximum value.
(3) Show that the curve with equation $y=1-0.5 x+2 x^{5}$ has no points of inflexion.
(1) $\mathrm{f}(x)=\frac{2}{\sqrt{x}}-x, \quad x>0$

The normal to $\mathrm{f}(x)$ at the point (p, q) is parallel to the line with equation $2 x-18 y=3$. Find the exact values of p and q.
(2) John has 72 m of wire and needs to make a rectangular pig pen with 3 sides below. (The existing wall doesn't need to be wired).

Use calculus to find the maximum possible area the pig pen can be and prove that it's a maximum value.
(3) Show that the curve with equation $y=1-0.5 x+2 x^{5}$ has no points of inflexion.

www.m4ths.com - A Level Maths 3 Exam Questions Yr 1 - Differentiation

(1) $\mathrm{f}(x)=\frac{2}{\sqrt{x}}-x, \quad x>0$

The normal to $\mathrm{f}(x)$ at the point (p, q) is parallel to the line with equation $2 x-18 y=3$. Find the exact values of p and q.
(2) John has 72 m of wire and needs to make a rectangular pig pen with 3 sides below. (The existing wall doesn't need to be wired).

Use calculus to find the maximum possible area the pig pen can be and prove that it's a maximum value.
(3) Show that the curve with equation $y=1-0.5 x+2 x^{5}$ has no points of inflexion.

