<u>www.m4ths.com – Year 1 AS</u> <u>Binomial Expansion</u>

(1) Use Pascal's Triangle to fully expand the following:

- (a) $(x+2)^3$
- (b) $(x-3)^4$
- (c) $(2x+1)^3$
- (d) $(a+b)^{5}$
- (e) $(3-p)^5$
- (f) $(1+x)(x+4)^3$

(2) (a) Find the expansion of $(3+x)^4$.

(b) Hence find the expansion of (i) $(3-x)^4$

(i) $(3 + y^2)^4$

(3) Find the value of the following:

- (a) ${}^{3}C_{2}$
- (b) ${}^{5}C_{3}$
- (c) ${}^{4}C_{1}$
- (d) $\begin{pmatrix} 7 \\ 5 \end{pmatrix}$

(4) Use the ${}^{n}C_{r}$ method for finding coefficients to find the first 4 terms in the expansion of

the following: (a) $(1+2x)^6$

(b) $(3-x)^{10}$

- (c) $(2-3x)^8$
- (d) $(a-2b)^{12}$

(e) $(2+x)(1-4x)^7$

(5) (a) Expand fully $(1+2x)^5$ in ascending powers of x. (b) Hence write down the full expansion of $(1-2x)^5$. (c) Simplify $(1+2x)^5 + (1-2x)^5$ (6) (a) Find the term in x^5 in the expansion of $(5-x)^{12}$. (b) Find the term in x^7 in the expansion of $\left(1+\frac{x}{3}\right)^9$. (c) Find the term in x^{18} in the expansion of $\left(0.5+x^3\right)^{13}$.

(7) Find the term in x^3 in the expansion of $(3+2x)(1-x)^6$.

(8) Find the term independent of *y* in the expansion of:

(a)
$$\left(y + \frac{1}{y}\right)^{6}$$

(b) $\left(2y - \frac{1}{y^{2}}\right)^{12}$

(9) The coefficient of the term in x^2 in the expansion of $(3+px)^5$ is 1080. Given that p > 0, find the value of p.

(10) Given that the coefficient of the term in x in the expansion of $(2+ax)^4$ is 12, find the coefficient of the term in x^3 .

(11) (a) Find the first four terms in the expansion of $(1+2x)^8$.

By using a suitable substitution for *x* and the answer found in part (a), approximate: (b) $(1.01)^8$

(c) $(0.98)^8$

(Round each answer to 4 decimal places) (d) Explain what would happen to the accuracy of your answer in parts (b) and (c) if you use (i) the first 3 terms and (ii) the first 7 terms instead of the first 4 terms found in part (a).

(12) Use the binomial expansion

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots$$

© Steve Blades

to find the first 4 terms in the expansion of: $\frac{9}{2}$

(a)
$$(1+2x)^{7}$$

(b) $(1-0.5x)^{7}$
(c) $\left(1+\frac{x}{2}\right)^{6}$
(d) $(3-x)^{10}$
(e) $(1-5x)^{\frac{1}{2}}$

(13) Given that n > 0 and the coefficient of the term in x^2 in the expansion of $(1+2x)^n$ is 40, find the value of n.

(14) Given that *n* and *p* are both positive integers and that $(1+px)^n = 1+12x+54x^2+...,$ find the coefficient of the term in x^3 in the expansion of $(1+px)^n$.

(15) (a) Expand $(1+y)^4$ in ascending powers of y. (b) Using your answer to part (a) and a suitable substitution, find the value of

$$\left(1+\sqrt{2}\right)^4 - \left(1-\sqrt{2}\right)^4$$
 in the form $p\sqrt{2}$.

(16) Find, in fully factored form, the first 3 terms in the expansion of $(2+x)(1+px)^n$ giving your answer in terms of *n*, *p* and *x*.

(17) (a) Find the first 4 terms in the expansion of $(1+3x)^6$.

(b) By using a suitable value of *x* and your answer to part (a) to find an approximate value of

 $(1.03)^6$ correct to 5 dp.

(c) Find the percentage error between the approximation found in part (b) and the actual value of $(1.03)^6$.