(1) Prove that the sum of the squares of any 2 consecutive odd numbers is always even.
(2) $\mathrm{f}(x)=\sqrt{x}$

Prove, by exhaustion, that when x is a positive single digit integer $\mathrm{f}(x)>0$.
(3) Prove that $4 x^{2} \geq 5(2 x-5)$ for all real values of x.

www.m4ths.com - A Level Maths
 3 Exam Questions
 Yr 1 - Algebraic Methods - Proof

(1) Prove that the sum of the squares of any 2 consecutive odd numbers is always even.
(2) $\mathrm{f}(x)=\sqrt{x}$

Prove, by exhaustion, that when x is a positive single digit integer $\mathrm{f}(x)>0$.
(3) Prove that $4 x^{2} \geq 5(2 x-5)$ for all real values of x.

www.m4ths.com - A Level Maths 3 Exam Questions
 Yr 1 - Algebraic Methods - Proof

(1) Prove that the sum of the squares of any 2 consecutive odd numbers is always even.
(2) $\mathrm{f}(x)=\sqrt{x}$

Prove, by exhaustion, that when x is a positive single digit integer $\mathrm{f}(x)>0$.
(3) Prove that $4 x^{2} \geq 5(2 x-5)$ for all real values of x.

www.m4ths.com - A Level Maths

 3 Exam QuestionsYr 1 - Algebraic Methods - Proof
(1) Prove that the sum of the squares of any 2 consecutive odd numbers is always even.
(2) $\mathrm{f}(x)=\sqrt{x}$

Prove, by exhaustion, that when x is a positive single digit integer $\mathrm{f}(x)>0$.
(3) Prove that $4 x^{2} \geq 5(2 x-5)$
for all real values of x.

www.m4ths.com - A Level Maths 3 Exam Ouestions
Yr 1 - Algebraic Methods - Proof

(1) Prove that the sum of the squares of any 2 consecutive odd numbers is always even.
(2) $\mathrm{f}(x)=\sqrt{x}$

Prove, by exhaustion, that when x is a positive single digit integer $\mathrm{f}(x)>0$.
(3) Prove that $4 x^{2} \geq 5(2 x-5)$ for all real values of x.

www.m4ths.com - A Level Maths 3 Exam Questions
 Yr 1 - Algebraic Methods - Proof

(1) Prove that the sum of the squares of any 2 consecutive odd numbers is always even.
(2) $\mathrm{f}(x)=\sqrt{x}$

Prove, by exhaustion, that when x is a positive single digit integer $\mathrm{f}(x)>0$.
(3) Prove that $4 x^{2} \geq 5(2 x-5)$ for all real values of x.

www.m4ths.com - A Level Maths 3 Exam Questions
 Yr 1 - Algebraic Methods - Proof

(1) Prove that the sum of the squares of any 2 consecutive odd numbers is always even.
(2) $\mathrm{f}(x)=\sqrt{x}$

Prove, by exhaustion, that when x is a positive single digit integer $\mathrm{f}(x)>0$.
(3) Prove that $4 x^{2} \geq 5(2 x-5)$ for all real values of x.

www.m4ths.com - A Level Maths 3 Exam Questions
 Yr 1 - Algebraic Methods - Proof

(1) Prove that the sum of the squares of any 2 consecutive odd numbers is always even.
(2) $\mathrm{f}(x)=\sqrt{x}$

Prove, by exhaustion, that when x is a positive single digit integer $\mathrm{f}(x)>0$.
(3) Prove that $4 x^{2} \geq 5(2 x-5)$ for all real values of x.
(1) Prove that the sum of the squares of any 2 consecutive odd numbers is always even.
(2) $\mathrm{f}(x)=\sqrt{x}$

Prove, by exhaustion, that when x is a positive single digit integer $\mathrm{f}(x)>0$.
(3) Prove that $4 x^{2} \geq 5(2 x-5)$ for all real values of x.

www.m4ths.com - A Level Maths
 3 Exam Questions
 Yr 1 - Algebraic Methods - Proof

(1) Prove that the sum of the squares of any 2 consecutive odd numbers is always even.
(2) $\mathrm{f}(x)=\sqrt{x}$

Prove, by exhaustion, that when x is a positive single digit integer $\mathrm{f}(x)>0$.
(3) Prove that $4 x^{2} \geq 5(2 x-5)$ for all real values of x.

www.m4ths.com - A Level Maths
 3 Exam Questions
 Yr 1 - Algebraic Methods - Proof

(1) Prove that the sum of the squares of any 2 consecutive odd numbers is always even.
(2) $\mathrm{f}(x)=\sqrt{x}$

Prove, by exhaustion, that when x is a positive single digit integer $\mathrm{f}(x)>0$.
(3) Prove that $4 x^{2} \geq 5(2 x-5)$ for all real values of x.

www.m4ths.com - A Level Maths
 3 Exam Questions
 Yr 1 - Algebraic Methods - Proof

(1) Prove that the sum of the squares of any 2 consecutive odd numbers is always even.
(2) $\mathrm{f}(x)=\sqrt{x}$

Prove, by exhaustion, that when x is a positive single digit integer $\mathrm{f}(x)>0$.
(3) Prove that $4 x^{2} \geq 5(2 x-5)$
for all real values of x.

