www.m4ths.com - A Level Maths
3 Exam Questions Yr 1
Algebraic Methods - Factor Theorem
(1) Given $(x-3)$ and $(x+2)$ are factors of $p x^{3}-x^{2}+q x-6$ find the values of p and q.
(2) $\mathrm{f}(x)=3 x^{3}-x^{2}-19 x-15$
(a) Show that $(x+1)$ is a factor of $\mathrm{f}(x)$.
(b) Hence sketch the graph of $y=\mathrm{f}(x)$ showing any points of intersection with the coordinate axes.
(3) Show that there is only one real root to the equation $x^{3}+x-2=0$.
www.m4ths.com - A Level Maths 3 Exam Questions Yr 1
Algebraic Methods - Factor Theorem
(1) Given $(x-3)$ and $(x+2)$ are factors of $p x^{3}-x^{2}+q x-6$ find the values of p and q.
(2) $\mathrm{f}(x)=3 x^{3}-x^{2}-19 x-15$
(a) Show that $(x+1)$ is a factor of $\mathrm{f}(x)$.
(b) Hence sketch the graph of $y=\mathrm{f}(x)$ showing any points of intersection with the coordinate axes.
(3) Show that there is only one real root to the equation $x^{3}+x-2=0$.

www.m4ths.com - A Level Maths
3 Exam Questions Yr 1
Algebraic Methods - Factor Theorem

(1) Given $(x-3)$ and $(x+2)$
are factors of $p x^{3}-x^{2}+q x-6$ find the values of p and q.
(2) $\mathrm{f}(x)=3 x^{3}-x^{2}-19 x-15$
(a) Show that $(x+1)$ is a factor of $\mathrm{f}(x)$.
(b) Hence sketch the graph of $y=\mathrm{f}(x)$ showing any points of intersection with the coordinate axes.
(3) Show that there is only one real root to the equation
$x^{3}+x-2=0$.
www.m4ths.com - A Level Maths 3 Exam Questions Yr 1
Algebraic Methods - Factor Theorem
(1) Given $(x-3)$ and $(x+2)$ are factors of $p x^{3}-x^{2}+q x-6$ find the values of p and q.
(2) $\mathrm{f}(x)=3 x^{3}-x^{2}-19 x-15$
(a) Show that $(x+1)$ is a factor of $\mathrm{f}(x)$.
(b) Hence sketch the graph of $y=\mathrm{f}(x)$ showing any points of intersection with the coordinate axes.
(3) Show that there is only one real root to the equation $x^{3}+x-2=0$.

www.m4ths.com - A Level Maths 3 Exam Questions Yr 1
 Algebraic Methods - Factor Theorem

(1) Given $(x-3)$ and $(x+2)$ are factors of $p x^{3}-x^{2}+q x-6$ find the values of p and q.
(2) $\mathrm{f}(x)=3 x^{3}-x^{2}-19 x-15$
(a) Show that $(x+1)$ is a factor of $\mathrm{f}(x)$.
(b) Hence sketch the graph of $y=\mathrm{f}(x)$ showing any points of intersection with the coordinate axes.
(3) Show that there is only one real root to the equation $x^{3}+x-2=0$.

www.m4ths.com - A Level Maths 3 Exam Questions Yr 1
 Algebraic Methods - Factor Theorem

(1) Given $(x-3)$ and $(x+2)$ are factors of $p x^{3}-x^{2}+q x-6$ find the values of p and q.
(2) $\mathrm{f}(x)=3 x^{3}-x^{2}-19 x-15$
(a) Show that $(x+1)$ is a factor of $\mathrm{f}(x)$.
(b) Hence sketch the graph of $y=\mathrm{f}(x)$ showing any points of intersection with the coordinate axes.
(3) Show that there is only one real root to the equation
$x^{3}+x-2=0$.
(1) Given $(x-3)$ and $(x+2)$ are factors of $p x^{3}-x^{2}+q x-6$ find the values of p and q.
(2) $\mathrm{f}(x)=3 x^{3}-x^{2}-19 x-15$
(a) Show that $(x+1)$ is a factor of $\mathrm{f}(x)$.
(b) Hence sketch the graph of $y=\mathrm{f}(x)$ showing any points of intersection with the coordinate axes.
(3) Show that there is only one real root to the equation $x^{3}+x-2=0$.

www.m4ths.com - A Level Maths 3 Exam Questions Yr 1
 Algebraic Methods - Factor Theorem

(1) Given $(x-3)$ and $(x+2)$ are factors of $p x^{3}-x^{2}+q x-6$ find the values of p and q.
(2) $\mathrm{f}(x)=3 x^{3}-x^{2}-19 x-15$
(a) Show that $(x+1)$ is a factor of $\mathrm{f}(x)$.
(b) Hence sketch the graph of $y=\mathrm{f}(x)$ showing any points of intersection with the coordinate axes.
(3) Show that there is only one real root to the equation
$x^{3}+x-2=0$.

www.m4ths.com - A Level Maths
 3 Exam Questions Yr 1
 Algebraic Methods - Factor Theorem

(1) Given $(x-3)$ and $(x+2)$ are factors of $p x^{3}-x^{2}+q x-6$ find the values of p and q.
(2) $\mathrm{f}(x)=3 x^{3}-x^{2}-19 x-15$
(a) Show that $(x+1)$ is a factor of $\mathrm{f}(x)$.
(b) Hence sketch the graph of $y=\mathrm{f}(x)$ showing any points of intersection with the coordinate axes.
(3) Show that there is only one real root to the equation
$x^{3}+x-2=0$.

